CONTENTS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Preface</td>
<td>4</td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1. Background</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2. Engineering Education</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3. Approach to Curriculum</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4. Definitions/Descriptions</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5. Curriculum Structure</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>6. Methodology Followed</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>7. Expected Outcomes</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8. Future Steps to be Taken</td>
<td>14</td>
</tr>
<tr>
<td>II</td>
<td>Lists of Courses Identified</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Preamble</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1. Humanities and Social Sciences (HS)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2. Basic Sciences (BS)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3. Engineering Sciences-Common (ES)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>4. Professional Subjects-Core & Electives (PC, PE)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering(EE)</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5. Open Electives (OE)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>6. Mandatory Courses (MC)</td>
<td>20</td>
</tr>
<tr>
<td>III</td>
<td>Model Syllabi for Common Courses</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(a) Humanities and Social Sciences (HS)</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(b) Basic Sciences (BS)</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(c) Engineering Sciences-Common (ES)</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>(d) Open Electives (OE)</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>(e) Mandatory Courses (MC)</td>
<td>77</td>
</tr>
<tr>
<td>IV</td>
<td>Model Scheme of Instruction & Syllabi</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering(EE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annexure</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Composition of Working Groups (A)</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Composition of AIB UGS (E&T) (B)</td>
<td>125</td>
</tr>
</tbody>
</table>
FOREWORD

It is with great pleasure and honour that I write a foreward for the Model Scheme of Instruction and Syllabi for the Undergraduate Engineering Degree Programmes prepared by the All India Board of Undergraduate Studies in Engineering & Technology with Prof. B.S. Sonde as its Chairman and other members. All India Council for Technical Education has the responsibility for uniform development and qualitative growth of the Technical Education system and preparation of syllabi to maintain uniform standards throughout the county. In pursuance to clause 10 (2) of the AICTE Act 1987, AICTE has the objective of bringing about uniformity in the curriculum of Engineering. In that direction, the effort of the All India Board of UG Studies in Engineering & Technology has been quite commendable and praiseworthy. A good effort was made by the Chairman, members of the Board and various Working Groups composed of experts from leading institutions in framing of the Scheme of Instruction and Syllabi. The Board was ably assisted by the official of the Academics Bureau in successfully organizing the meetings, making available necessary documents and follow up action on the minutes of the meetings.

Prof. S. S. Mantha
Chairman
All India Council for Technical Education
PREFACE

For centuries, Universities have been established worldwide as institutions providing higher education and research opportunities to the youth for shaping their future. They have also been recognized as the most important indicators of a nation’s progress. More recently, the UNESCO World Conference on Higher Education (Paris, 1998) has observed that higher education and research act as essential components of culture, socio-economic and environmentally sustainable development of individuals, communities and nations, since the society is now becoming increasingly knowledge-based. As University education in Engineering and Technology (E&T) has a significant role in enhancing their capabilities and competitiveness, the developed nations have been attaching much importance to this sector. This is no exception in India, which has prepared a time table to become a developed nation by the year 2020 and already launched a strategy for this.

Thus, for past some time, India has been laying much emphasis on E&T disciplines at the Universities and also on the setting up of Universities exclusively for E&T and the system has been expanding at a remarkable pace. As a result, many Universities having the Faculty of E&T and E&T Universities themselves have become common in India. These Universities are either unitary, with their academic activities like, Departments/Constituent Colleges restricted to their campuses or affiliating, having their Colleges such as, Affiliated/Autonomous/Constituent, spread out in their jurisdiction areas. Besides, India has established many elitist institutions of national importance, such as, Indian Institutes of Technology (IITs) and National Institutes of Technology (NITs) having University level functions in E&T with some of international acclaim.

While these initiatives have enabled the country to provide better access to the youth for higher education in E&T, the diversities in the current University system have inhibited reaching superior levels of quality and standard in the education imparted in most cases, except IITs/NITs and select institutions. It is now a matter of concern that the E&T Curriculum in the Indian University system has not been able to keep pace with the current technological advances on the world scene and a large percentage of E&T graduates are observed to need further education/training to be effective.

Considering this, the Chairman, All India Council for Technical Education (AICTE) had advised the All India Board for UnderGraduate Studies in E&T (AIB UGS (E&T)) to formulate Model Scheme of Instruction and Syllabi for the UG Programmes of Study in E&T at Indian Universities. As over 80% of UG students’ annual intake is mainly for six branches, viz., EC, EE, CS, ME, CE and IT, the framing of Model Scheme/Syllabi was taken up for these in the first instance and the same have been presented in this document. It is hoped that the Model Scheme of Instruction and Syllabi would be of help in revitalizing UG E&T education in the country.

The AIB UGS (E&T) expresses its appreciation at the fine work done and the contribution made by Coordinators/Members of the Working Groups, who have adhered to the guidelines provided and enabled the detailed framing of the Model Scheme of Instruction and Syllabi and also thanks them for their excellent cooperation and mature/learned inputs. The assistance received from the AICTE Academic Bureau in this assignment is also gratefully acknowledged.

Bangalore, October 2012

Prof. B. S. Sonde
Chairman, on behalf of AIB UGS (E&T)
CHAPTER I
INTRODUCTION

1. Background:
The engineering education system in India has witnessed rapid progress in recent years under the guidance, direction and leadership of the All India Council for Technical Education (AICTE) to become one of the largest in the world. About 3400 colleges with widely varying governance structures and their locations spread in metro, urban, semi-urban and rural areas, opportunities for studies in over thirty branches of Engineering and Technology (E&T) disciplines and an annual intake of over 1.2 million students constitute its status in 2011-12. Considering the wide diversities in the system and the need to enhance its quality, standard and relevance so that the E&T graduates passing out from the system can meet the 21st century challenges ahead of them, the Chairman, AICTE had desired that a Model Scheme of Instruction and Syllabi for the various programmes of study be proposed by the All India Board for Under Graduate Studies in E&T (AIB UGS (E&T)) of AICTE. The AIB UGS (E&T), after detailed deliberations and associating senior experts from leading institutions in the country, has proposed in this document, a Model Scheme of Instruction and Syllabi for UGS (E&T) for six of the most popular programmes of study now enrolling over 80% of UG (E&T) students in the country. It is expected that the experience gained in implementing the Model Scheme of Instruction and Syllabi as proposed, would be of help to the AIB UGS (E&T) to take up the drafting of Model Scheme of Instruction and Syllabi for the remaining programmes of study.

2. Engineering Education:
It is well known that E&T professionals are key personnel in any country responsible for its economic progress and prosperity, leading to increased comfort and satisfaction levels of its people and the society at large. The developed countries have already benefitted from their knowledge and skills and have demonstrated the crucial role played by these professionals in strengthening their R&D, industries and economies. As India is now engaged in such an endeavour and has prepared a road map for becoming a developed nation by the year 2020, serious efforts are now going on in the country in this direction. In this context, the education and training of E&T professionals are now receiving much attention here. But, there are challenges being faced by these professionals in the on-going 21st century, recognized as the Knowledge Age, like:

1) Rapidly changing technological scene worldwide, with a shrinking time scale for new developments and for obsolescence of old practices, leading to:
 • Increase in investment on R&D in industry and other sectors;
 • Demand for innovative products and services, based on contemporary technologies; and,
 • Growing need for enhancement of abilities to manage change, so frequent, now a days;
2) Globalization and liberalization of Indian industry, leading to:
 • Comprehensive restructuring of industry sector for enhancing efficiency;
 • Increase in world-wide mobility of E&T professionals; and,
• Growth of competitive environment globally and also in the country;

3) **Emergence of new career opportunities for E&T professionals, leading to:**
• Demand for broad-based, flexible education in multi/inter-disciplinary subjects;
• Emphasis on PG courses, research training and institute-industry interaction; and,
• Advances in learner-centric programmes and life-long learning opportunities;

4) **Penetration of IT in all sectors of the E&T profession, leading to:**
• Increased demand for IT-based solutions to industrial and societal problems;
• Expertise in emerging IT developments to solve complex, E&T problems; and,
• Improved access to worldwide information/data bases and knowledge centres.

5) **Increased social/environmental concerns in the E&T context, leading to:**
• Effective means for protection of endangered environment and depleting energy sources;
• Seeking environment- and energy-friendly solutions to E&T problems; and.
• Wealth generation using environmentally benign and energy efficient techniques;

These challenges require appropriate orientation of E&T education and research in the country at all levels, particularly at UG and revitalizing the same as outlined below, so that E&T professionals of the 21st century are equipped to face the challenges with determination and courage becoming ready in a short time to contribute to national development.

3. **Approach to Curriculum:**

As a major objective of E&T education in India now is to develop E&T professionals having competencies, intellectual skills and knowledge equipping them to contribute to the society through productive and satisfying careers as innovators, decision makers and leaders in the national and global economies of the 21st century, the Approach to Curriculum for UG E&T Degree Programmes needs to lay special emphasis on educating/preparing the students well for being able to demonstrate the following abilities:

(a) Effective application of knowledge of mathematics, science and technical subjects;
(b) Planning and design to conduct scientific and technical experiments;
(c) Analysis and interpretation of scientific, technical and economic data collected;
(d) Design of parts, subsystems, systems and/or processes to meet specific needs;
(e) Identification, formulation and solving of problems using simulation or otherwise;
(f) Use of techniques/tools including software in all disciplines, as may be required;
(g) Effective communication skills and leadership/participation in team work;
(h) Fulfillment of professional, social and ethical responsibilities;
(i) Sensitivity to environmental and energy issues and concerns;
(j) Planning, development and implementation of strategies for life-long learning. These requirements call for the following objectives to the Approach to Curriculum relating to UG students at E&T Degree Programmes in the country:

1) **Preparation:** To prepare the students to excel in various educational programmes or to succeed in industry / technical profession through further education/training;

2) **Core Competence:** To provide the students with a solid foundation in mathematical, scientific and E&T fundamentals required to solve E&T related problems;

3) **Breadth:** To train the students with a breadth of scientific and E&T knowledge to comprehend, analyze, design & create novel products and solutions for real life problems;

4) **Professionalism:** To inculcate in the students professional/ethical attitude, effective team work skills, multidisciplinary approach and to relate E&T issues to a broader context;

5) **Learning Environment:** To provide the students with academic environment of excellence, leadership, ethical guidelines and life-long learning needed for a long/productive career.

4. **Definitions/Descriptions:**

Thus, in framing a suitable curriculum for the UG E&T Degree Programmes, the following definitions/descriptions have been followed for the different terms used. This is expected to help in maintaining uniformity of presentation in the Model Scheme of Instruction and Syllabi for the various Programmes covered here:

1. **Semester Scheme:** Each UG E&T Degree Programme to be ordinarily of 4 academic years (=8 Semesters), with the year being divided into two Semesters of ~ 20 weeks (>=90 working days) each for course work, followed by Continuous Internal Evaluation (CIE) in the Semester & Semester End Examination (SEE) as reforms in Achievement Testing;

2. **Credit System:** A system enabling quantification of course work, with one credit being assigned to each unit after a student completes its teaching-learning process, followed by passing in both CIE & SEE; Further, Choice Based Credit System (CBCS) to be helpful in customizing the course work for a student, through Core & Electives;

3. **Credit Courses:** All Courses registered by a student in a Semester to earn credits; In a widely accepted definition, students to earn One Credit by registering and passing:
 - One hour/week/Semester for Theory/Lecture (L) Courses; and,
 - Two hours/week/Semester for Laboratory/Practical(P) Courses or Tutorials (T);

NOTE: Other student activities not demanding intellectual work or enabling proper assessment like, practical training, study tour and guest lecture not to carry Credits;

4. **Credit Representation:** Credit values for different academic activities to be represented by following the well accepted practice, as per the example in Table 1:
Table 1: Credit Representation

<table>
<thead>
<tr>
<th>Lectures (hrs/wk/Sem.)</th>
<th>Tutorials (hrs/wk/Sem.)</th>
<th>Practical Work (hrs/wk/Sem.)</th>
<th>Credits (L: T: P)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3:0:0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2:1:0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2:0:1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2:1:1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0:0:3</td>
<td>3</td>
</tr>
</tbody>
</table>

5. **Course Load**: Every student to register for a set of *Courses* in each *Semester*, with the total number of their *Credits* being limited by considering the permissible weekly *Contact Hours* (typically: 30/Week); For this, an average *Course Load* of 22 Credits/Semester (e.g., 6-7 *Courses*) generally acceptable; To include also 3 *Units of Non-Credit Mandatory Courses* in some Semesters, as per the example in Table 2:

Table 2: Typical Course Load in a Semester

<table>
<thead>
<tr>
<th>No. of Courses</th>
<th>Course Load per Semester</th>
<th>Total Credits</th>
<th>Contact Hours/Week *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Lecture Courses</td>
<td>3:0:0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Two Lec +Tut Courses</td>
<td>3:1:0</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>One Lec +Lab Course</td>
<td>3:0:1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>One Lec +Lab+ Tut Course</td>
<td>2:1:1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>One Mandatory Course</td>
<td>Non-Credit</td>
<td>3 Units</td>
<td>3</td>
</tr>
<tr>
<td>Total: Six + one</td>
<td>17:3:2</td>
<td>22</td>
<td>30</td>
</tr>
</tbody>
</table>

* Widely accepted figure ~ 30 hours/week, to enable the students to engage in home work assignments, self-learning outside the Class rooms/Laboratories, Extra/Co-Curricular activities and *add-on Courses*, if any, for their overall development;

6. **Course Flexibility**: *Course work* of students to be made flexible to enable fast, average and slow learners among them to plan and pace the same in a *Semester* as may be necessary and register for more/average/less *Credits* within limits (e.g., +/- 20%) from the prescribed value, based on their learning capacities as observed from *CIE, SEE* results in *Coursework* in the previous *Semesters*;

7. **Audit Courses**: Students to be able to register for *Courses* outside the prescribed range of *Credits for audit* only, when interested to supplement their knowledge/skills; Optional for students to appear/pass in *CIE, SEE* of these courses and/or seek their inclusion in the *Grade cards or Transcripts* issued (but, not for earning *Credit*);

8. **Mandatory Courses**: *Course work* on peripheral subjects in a programme, wherein familiarity considered mandatory; To be included as *non-Credit, Mandatory Courses*, with
only a pass in each required to qualify for Degree award from the concerned institution; Such Courses to be limited to < 5% of the maximum permissible Course/Credit Load;

9. **Course Registration:** Every student to formally register for Courses(Credits) under faculty advice in each Semester for the Institution to maintain proper record; Helpful for monitoring the CIE, SEE performance in each case and to assist the students in self-paced learning by dropping/withdrawing from Course(s), and to avail of Course Flexibility;

10. **Course Evaluation:** CIE and SEE to constitute the major evaluations prescribed for each Course, with only those students maintaining a minimum standard in CIE (to be fixed by the institution) being permitted to appear in SEE of the Course; CIE and SEE to carry 50% each, to enable each Course to be evaluated for 100 marks, irrespective of its Credits;

11. **CIE:** To be normally conducted by the Course Instructor and include mid-term/weekly/fortnightly class tests, home work, problem solving, group discussion, quiz, mini-project & seminar throughout the Semester, with weightage for the different components being fixed at the institutional level; Instructor also to discuss on CIE performance with students;

12. **SEE:** To be normally conducted at the institutional level and cover the entire Course Syllabi; For this purpose, Syllabi to be modularized and SEE questions to be set from each module, with choice if any, to be confined to module concerned only. The questions to be comprehensive emphasizing analysis, synthesis, design, problems & numerical quantities;

13. **Grading:** To be normally done using Letter Grades as qualitative measure of achievement in each Course like: S(Superior), A(Excellent), B(Very Good), C(Good), D(Average), E(Poor) & F(Fail), based on the marks(%) scored in (CIE+SEE) of the Course and conversion to Grade done by Relative/Absolute Grading, the former being more useful;

14. **Grade Point(GP):** Students to earn GP for a Course based on its Letter Grade; e.g., on a typical 10-point scale, GP to be: S=10, A=09, B=08, C=07, D=06, E=04 & F=00; Useful to assess students’ achievement quantitatively & to compute Credit Points (CrP) = GP X Credits for the Course; Student passing a Course only when getting GP >= 04 (E Grade);

15. **Grade Point Average(GPA):** Computation of SemesterGPA (SGPA) to be done by dividing the sum of CrP of all Courses by the total number of Cr registered in a Semester, leading finally to CGPA for evaluating student’s performance at the end of two or more Semesters cumulatively; This reform serving as a better performance index than total marks or %;

16. **Passing Standards:** Both SGPA & CGPA serving as useful performance measures in the Semester System; Student to be declared successful at the Semester-end or Programme-end only when getting SGPA or CGPA >=5.00, with none of the Courses registered in a Semester or for the Degree Award remaining with F Grade;

17. **Credits Required for Degree Award:** Number of Credits to be earned by a student for the UG (E&T) Degree Award fixed by Universities/Institutions to be normally in the range of
160 (20/Sem.) to 200 (25/Sem.); Widely accepted value: 176 (22/Sem.); Also, each student to be successful in the mandatory courses as may be prescribed to qualify for the Degree;

5. Curriculum Structure:

A typical Curriculum Structure for UG E&T Degree Programmes evolved as a result of the Approach to Curriculum and Definitions/Descriptions provided above can be broadly as given in Table 3. A suggested breakdown of Credits for use in these programmes in India is also given here.

Table 3: Typical Curriculum Structure for UG E&T Degree Programmes

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Work - Subject Area</th>
<th>Range of Total Credits (%)</th>
<th>Suggested Breakdown of Credits (for Total=176) (No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>1</td>
<td>Humanities and Social Sciences (HS), including Management;</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Basic Sciences (BS) including Mathematics, Physics, Chemistry, Biology;</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Sciences (ES), including Materials, Workshop, Drawing, Basics of Electrical/Electronics/Mechanical/Computer Engineering, Instrumentation;</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Professional Subjects - Core (PC), relevant to the chosen specialization/branch; (May be split into Hard (no choice) and Soft (with choice), if required;)</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Professional Subjects - Electives (PE), relevant to the chosen specialization/branch;</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Open Subjects - Electives (OE), from other technical and/or emerging subject areas;</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Project Work, Seminar and/or Internship in Industry or elsewhere.</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Mandatory Courses (MC);</td>
<td>Non-Credit</td>
<td>8 units</td>
</tr>
</tbody>
</table>

The suggested Course Work (=176 Credits, at 22/Semester on an average with built-in flexibility of +/-20% as indicated earlier) in Table 3 needs to be completed successfully by a student to qualify for the award of the UG E&T Degree from the concerned University/Institution. A widely accepted plan for sequencing the Course Work can be as in Table 4:

Table 4: Typical Sequencing Plan for Courses at UG E&T Degree Programmes

<table>
<thead>
<tr>
<th>Semesters</th>
<th>Subject Area Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – II</td>
<td>HS, BS and ES Courses common for all Branches; Mandatory Courses;</td>
</tr>
</tbody>
</table>
III-IV | HS, BS and ES Courses common for all Branches (to be continued); Also, Mandatory Courses (to be continued, if required); PC (Hard/Soft) Courses in two/three groups (like Electrical, Non-Electrical); Area wise Orientation; Add-On Courses;

V-VII | PC (Hard/Soft), PE and OE Courses; Branch-wise Orientation; Add-On Courses; Seminar;

VIII | PE and OE Courses; Project work and Dissertation, Internship, Seminar; Add-On Courses; Final wrap-up of Programme;

6. Methodology Followed:

It was decided to follow the methodology given below for preparing the Model Scheme of Instruction and Syllabi for the UG E&T Degree Programmes:

1) As a first step, after conducting a scrutiny of all the current UG E&T Degree Programmes in the country, six of the highest intake capacity programmes, viz., EC, EE, CS, ME, CE and IT were identified to be taken up for preparing their Model Scheme of Instruction and Syllabi in the first instance.

2) It was decided that the Model Scheme of Instruction and Syllabi for each Programme need to be well balanced covering the various subject areas listed in Table 3 and have provision for proper achievement testing of the students in two parts, viz., CIE & SEE (described earlier in Section 4(11.12)) as given below:

a) For proper achievement testing of the students so necessary in the Semester Scheme, good question papers need to be used as the principal tool; For this, the question papers at CIE and SEE to:
 - Cover all sections of the course syllabus uniformly;
 - Be unambiguous and free from any defects/errors;
 - Emphasize knowledge testing, problem solving & quantitative methods;
 - Contain adequate data/ other information on the problems assigned; and,
 - Have clear and complete instructions to the students.

b) To meet these requirements, the Syllabi to be well drafted, be defect free and be in modular form with a provision for students to answer questions from each module from the syllabus for which the CIE/SEE Question Papers to have built in choice in the module;

c) Both CIE and SEE to be normally of equal (50:50) significance; and, the students’ achievement in a subject to be judged by taking into account the results of both CIE and SEE together for awarding the Letter Grade and the Grade Point, as indicated earlier.

3) The following Working Groups comprising 3-5 Subject Experts in each case were then constituted for each subject area listed in Table 3, to take up the responsibility of framing the Model Scheme of Instruction and Syllabi:
a) HS, as required for all the programmes (14 Credits);
b) BS, as required for all the programmes (30 Credits);
c) ES, as required for all the programmes (30 Credits);
d) PC and PE for each of the six identified programme (50 + 20 Credits);
e) OE, as required for all the programmes (12 Credits);
f) Project work and Dissertation, for all the programmes (20 Credits);
g) Mandatory Courses, for all the programmes (8 Units);

The composition of Working Groups constituted in this manner is given in Annexure A. The Coordinators and the Members of each Working Group were provided with a set of detailed guidelines to assist them in this assignment and to also ensure good uniformity in the Model Scheme of Instruction and Syllabi framed by the different Working Groups.

4) Each Working Group was also requested to use the following format for the Model Syllabi to be in accordance with the AICTE Template, to bring in uniformity in its presentation:

(i) **Title of the Course, Hours/Weak (L:T:P), Credits** (or Non-Credit, mandatory) in square brackets ([]) to be in line 1 (in bold print);

(ii) **Syllabus**, in modular or unitized form in 5-10 units to be then given, with the number of teaching-learning hours specified for each module (in normal letter style), if possible;

(iii) References: At least 2-3 Text Books and 1-2 Reference Books to be cited for each Course (Author(s), Book Title, Publisher, Edition, Year of Publication) (in italics);

(iv) Pre-requisites for the Course, if any, such as, knowledge of other subjects or other Courses to be given (in normal letter style), if possible;

5) After the Model Syllabi were received from all the Working Groups, the AIB UGS (E&T) took into consideration the various presentations provided, subjected them to editorial corrections/improvements and finalized the Model Scheme of Instruction and Syllabi given in the Chapters that follow.

7. **Expected Educational Outcomes:**

Special attention was also paid to ensure that the Model Scheme of Instruction and Syllabi had built-in provision to enable the following ten educational outcomes from the E&T students passing out of the Universities/Institutions adopting them:

1. Ability to apply the knowledge acquired in subject areas like, Mathematics, Basic Sciences, Engineering Sciences, Professional Subjects and Environmental Issues;

2. Strong foundation in theoretical/experimental work for being able to analyze, synthesize and design engineering products, processes and systems as desired;
3. Expertise in collecting field data, designing and conducting experiments in the laboratory/elsewhere and analyzing/interpreting the results;

4. Capacity to function in multi/inter-disciplinary teams with a spirit of tolerance, patience and understanding so necessary for team work;

5. Competence to acquire knowledge on one’s own through libraries/data bases for contributing to knowledge assimilation, creation, dissemination & life-long learning;

6. Better understanding and acceptance of professional, social, moral and ethical responsibilities and good knowledge of contemporary issues;

7. Familiarity with ICT and seeking pollution-free and/or environment- and energy- friendly solutions to day-to-day problems faced by the society at large, based on ICT;

8. Broad education necessary to get a perception of the impact of solutions provided for developmental issues in a global/societal context;

9. Capacity for rational, objective, orderly and logical thinking and ability to communicate with fellow professionals/society effectively in written/oral forms; and,

10. Good attitudes and skills in personnel management and maintenance of human relations, required in every one's working life.

8. Future Steps to be Taken:

The Model Scheme of Instruction and Syllabi proposed for the six chosen programmes of study are indeed at the current state of the art and they are suitable for being followed in the country at Technological/Other Universities/University level Institutions and Autonomous Colleges. Therefore, AICTE may take the following steps in the immediate future to ensure that the Scheme/Syllabi are widely adopted:

- The availability of Model Scheme of Instruction and Syllabi for the six chosen Programmes of Study may be publicized widely on the Web Site or otherwise;
- Selected institutions may be encouraged to adopt the Scheme/Syllabi on experimental basis or use them as guidelines and their experience utilized to make future plans;
- The experience gained may be used to initiate steps to improve and update the Scheme/Syllabi to be contemporary on a continuing basis;
- The feedback received from the institutions may also form the basis for taking steps to formulate such Schemes/Syllabi for other Programmes of Study;
- Institutions following the Scheme/Syllabi may be facilitated with autonomy, if needed, to benefit from CBCS and related Academic/Examination Reforms in E&T Programmes;

The Lists of Courses Identified as per the Curriculum Structure discussed are now given category-wise together with the proposed Credits and the preferred Semester in each case, followed by the Model Syllabi for Common Courses and the Model Scheme of Instruction and Syllabi for each of
the five identified Programmes of Study, viz., EC, EE, CS, ME, CE in the Chapters that follow. And, the Model Scheme of Instruction and Syllabi for the sixth identified programme, viz., IT is presented as Supplement to this Volume.
CHAPTER II
LISTS OF COURSES IDENTIFIED

1. Preamble:

The lists of courses, as identified by all the Working Groups constituted for the UG (E&T) programmes in the chosen branches and approved by AIB UGS (E&T) for their suitability to be used at Technical Universities/Institutions in India in the 21st century are given below in tabular form subject areawise, viz., HS, BS, ES, PC/PE branchwise (EC, EE, CS, ME, CE, IT), OE, MC and Project Work. In each case, the Course code, Course Title, suggested Instruction Hours/Week (in L:T: P format), Credits assigned and Preferred Semester for teaching/learning are indicated for ease of convenience and use by the academic community. However, the institutions may vary both L: T: P and Preferred Semester to some extent based on their experience/needs and the available faculty strength/competence.

2. The Lists:

(a) Humanities and Social Sciences (HS)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hrs/Wk L: T: P</th>
<th>Credits</th>
<th>Preferred Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HS 01</td>
<td>Sociology & Elements of Indian History for Engineers</td>
<td>3: 0: 0</td>
<td>3</td>
<td>I/II</td>
</tr>
<tr>
<td>2</td>
<td>HS 02</td>
<td>Economics for Engineers</td>
<td>3: 0: 0</td>
<td>3</td>
<td>I/II</td>
</tr>
<tr>
<td>3</td>
<td>HS 03</td>
<td>Law for Engineers</td>
<td>3: 0: 0</td>
<td>3</td>
<td>I/II</td>
</tr>
<tr>
<td>4</td>
<td>HS 04</td>
<td>Business Communication and Presentation Skills</td>
<td>2: 2: 4</td>
<td>5</td>
<td>I/II</td>
</tr>
<tr>
<td>5</td>
<td>HS 05</td>
<td>Environmental Sciences</td>
<td>1: 0: 2</td>
<td>2</td>
<td>I/II</td>
</tr>
</tbody>
</table>

(b) Basic Sciences (BS)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hrs/Wk L: T: P</th>
<th>Credits</th>
<th>Preferred Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 01</td>
<td>Elementary Mathematics for Engineers</td>
<td>2: 0: 0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>BS 02</td>
<td>Multivariate Analysis, Linear Algebra and Special Functions</td>
<td>3: 0: 0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>3</td>
<td>BS 03</td>
<td>Differential Equations</td>
<td>3: 0: 0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>4</td>
<td>BS 04</td>
<td>Complex Analysis</td>
<td>2: 0: 0</td>
<td>2</td>
<td>IV</td>
</tr>
<tr>
<td>5</td>
<td>BS 05</td>
<td>Optimization and Calculus of Variations</td>
<td>2: 0: 0</td>
<td>2</td>
<td>III</td>
</tr>
<tr>
<td>S. No.</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Hrs/Wk</td>
<td>Credits</td>
<td>Preferred Semester</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>ES 01</td>
<td>Engineering Graphics</td>
<td>2: 2: 0</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>ES 02</td>
<td>Engineering Workshop</td>
<td>0: 0: 6</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>ES 03</td>
<td>Materials Science</td>
<td>2: 0: 0</td>
<td>2</td>
<td>III</td>
</tr>
<tr>
<td>4</td>
<td>ES 04</td>
<td>Basic Engineering Mechanics</td>
<td>2: 2: 0</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>ES 05</td>
<td>Basic Electrical Engineering</td>
<td>3: 0: 0</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>6</td>
<td>ES 06</td>
<td>Basic Electrical Engineering Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>II</td>
</tr>
<tr>
<td>7</td>
<td>ES 07</td>
<td>Basic Electronics Engineering</td>
<td>3: 0: 0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>8</td>
<td>ES 08</td>
<td>Basic Electronics Engineering Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>III</td>
</tr>
<tr>
<td>9</td>
<td>ES 09</td>
<td>Computer Programming</td>
<td>2: 0: 0</td>
<td>2</td>
<td>II</td>
</tr>
<tr>
<td>10</td>
<td>ES 10</td>
<td>Computer Programming Laboratory</td>
<td>0: 0: 4</td>
<td>2</td>
<td>II</td>
</tr>
</tbody>
</table>

(c) **Engineering Sciences (ES)**

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hrs/Wk</th>
<th>Credits</th>
<th>Preferred Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 06</td>
<td>Probability and Statistics</td>
<td>2: 0: 0</td>
<td>2</td>
<td>IV</td>
</tr>
<tr>
<td>7</td>
<td>BS 07</td>
<td>Discrete Mathematics</td>
<td>2: 0: 0</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>8</td>
<td>BS 08</td>
<td>Fuzzy Mathematics</td>
<td>2: 0: 0</td>
<td>2</td>
<td>VI</td>
</tr>
<tr>
<td>9</td>
<td>BS 09</td>
<td>Applied Physics I</td>
<td>2: 0: 0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td>BS 10</td>
<td>Applied Physics II</td>
<td>2: 0: 0</td>
<td>2</td>
<td>II</td>
</tr>
<tr>
<td>11</td>
<td>BS 11</td>
<td>Applied Physics Laboratory I</td>
<td>0: 0: 2</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>12</td>
<td>BS 12</td>
<td>Applied Physics III</td>
<td>2: 0: 0</td>
<td>2</td>
<td>III</td>
</tr>
<tr>
<td>13</td>
<td>BS 13</td>
<td>Applied Physics Laboratory II</td>
<td>0: 0: 2</td>
<td>1</td>
<td>II</td>
</tr>
<tr>
<td>14</td>
<td>BS 14</td>
<td>Chemistry I</td>
<td>2: 0: 0</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>15</td>
<td>BS 15</td>
<td>Chemistry Laboratory I</td>
<td>0: 0: 2</td>
<td>1</td>
<td>I/II</td>
</tr>
<tr>
<td>16</td>
<td>BS 16</td>
<td>Chemistry II</td>
<td>3: 0: 0</td>
<td>3</td>
<td>II/III</td>
</tr>
<tr>
<td>17</td>
<td>BS 17</td>
<td>Elementary Biology</td>
<td>1: 0: 2</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>18</td>
<td>BS 18</td>
<td>Advanced Biology I</td>
<td>1: 0: 2</td>
<td>2</td>
<td>II</td>
</tr>
<tr>
<td>19</td>
<td>BS 19</td>
<td>Advanced Biology II</td>
<td>1: 0: 2</td>
<td>2</td>
<td>III</td>
</tr>
<tr>
<td>S. No.</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Hrs/Wk</td>
<td>Credits</td>
<td>Preferred Semester</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>EE 01</td>
<td>Field Theory and Circuits</td>
<td>2: 2: 0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>2</td>
<td>EE 02</td>
<td>Electronic Devices and Systems</td>
<td>2: 2: 0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>3</td>
<td>EE 03</td>
<td>Electrical Machines I</td>
<td>1: 2: 2</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>4</td>
<td>EE 04</td>
<td>Measurements and Instruments</td>
<td>2: 2: 0</td>
<td>3</td>
<td>III</td>
</tr>
<tr>
<td>5</td>
<td>EE 05</td>
<td>Measurements and Instruments Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>III</td>
</tr>
<tr>
<td>6</td>
<td>EE 06</td>
<td>Electronic Devices and Systems Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>III</td>
</tr>
<tr>
<td>7</td>
<td>EE 07</td>
<td>Electrical Machines Laboratory I</td>
<td>0: 0: 2</td>
<td>1</td>
<td>III</td>
</tr>
<tr>
<td>8</td>
<td>EE 08</td>
<td>Network Analysis and Synthesis</td>
<td>2: 2: 0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td>9</td>
<td>EE 09</td>
<td>Power Electronics</td>
<td>2: 2: 0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td>10</td>
<td>EE 10</td>
<td>Electrical Machines II</td>
<td>2: 2: 0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td>11</td>
<td>EE 11</td>
<td>Power Systems I</td>
<td>2: 2: 0</td>
<td>3</td>
<td>IV</td>
</tr>
<tr>
<td>12</td>
<td>EE 12</td>
<td>Power Electronics Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>IV</td>
</tr>
<tr>
<td>13</td>
<td>EE 13</td>
<td>Electrical Machines Laboratory II</td>
<td>0: 0: 2</td>
<td>1</td>
<td>IV</td>
</tr>
<tr>
<td>14</td>
<td>EE 14</td>
<td>Power Systems Laboratory I</td>
<td>0: 0: 2</td>
<td>1</td>
<td>IV</td>
</tr>
<tr>
<td>15</td>
<td>EE 15</td>
<td>Network Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>IV</td>
</tr>
<tr>
<td>16</td>
<td>EE 16</td>
<td>Control Systems</td>
<td>2: 2: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>17</td>
<td>EE 17</td>
<td>Power Systems II</td>
<td>2: 2: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>18</td>
<td>EE 18</td>
<td>Microprocessors and Microcontrollers</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>19</td>
<td>EE 19</td>
<td>Simulation Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>20</td>
<td>EE 20</td>
<td>Control Systems Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>21</td>
<td>EE 21</td>
<td>Power Systems Laboratory II</td>
<td>0: 0: 2</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>22</td>
<td>EE 22</td>
<td>Microprocessors and Microcontrollers Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>23</td>
<td>EE 23</td>
<td>Electric Drives</td>
<td>2: 0: 0</td>
<td>2</td>
<td>VI</td>
</tr>
<tr>
<td>24</td>
<td>EE 24</td>
<td>Computer Aided Analysis and Design</td>
<td>2: 0: 0</td>
<td>2</td>
<td>VI</td>
</tr>
<tr>
<td>25</td>
<td>EE 25</td>
<td>Electric Drives Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>VI</td>
</tr>
<tr>
<td>26</td>
<td>EE 26</td>
<td>Advanced Simulation Laboratory</td>
<td>0: 0: 2</td>
<td>1</td>
<td>VI</td>
</tr>
<tr>
<td>27</td>
<td>EE 27</td>
<td>Computer Organization and Architecture</td>
<td>2: 2: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>28</td>
<td>EE 28</td>
<td>Communication Systems</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>29</td>
<td>EE* 29</td>
<td>Information Technology</td>
<td>2: 2: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>29</td>
<td>EE* 30</td>
<td>Information Security</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>30</td>
<td>EE* 31</td>
<td>Digital Signal Processing</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>31</td>
<td>EE* 32</td>
<td>Database Systems</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>32</td>
<td>EE* 33</td>
<td>High Voltage Engineering</td>
<td>2: 0: 2</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>33</td>
<td>EE*34</td>
<td>Mechatronics</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>34</td>
<td>EE* 35</td>
<td>Design of Electrical Machines</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>35</td>
<td>EE* 36</td>
<td>Computational Intelligence</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>36</td>
<td>EE* 37</td>
<td>Introduction to Robotics</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>37</td>
<td>EE* 38</td>
<td>Non Conventional Energy Sources and Applications</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>38</td>
<td>EE* 39</td>
<td>Advanced Instrumentation</td>
<td>2: 0: 2</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>39</td>
<td>EE* 40</td>
<td>Computer Networks</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>40</td>
<td>EE* 41</td>
<td>Advanced Control Systems</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>41</td>
<td>EE* 42</td>
<td>Advanced Power Electronics</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>43</td>
<td>EE* 43</td>
<td>Materials in Electrical Systems</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>44</td>
<td>EE* 44</td>
<td>Advanced Power Systems</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>45</td>
<td>EE* 45</td>
<td>Switchgear and Relaying</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>S. No.</td>
<td>Course No.</td>
<td>Course Title</td>
<td>Hrs/Wk</td>
<td>Credits</td>
<td>Preferred Semester</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--</td>
<td>--------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>46</td>
<td>EE* 46</td>
<td>Utilization of Electrical Energy and Electric Traction</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>47</td>
<td>EE P1</td>
<td>Project Work I</td>
<td>0: 0: 8</td>
<td>4</td>
<td>VII</td>
</tr>
<tr>
<td>48</td>
<td>EE P2</td>
<td>Project Work II & Dissertation</td>
<td>0: 0: 32</td>
<td>16</td>
<td>VIII</td>
</tr>
</tbody>
</table>

(Note: Electives in one group: EE*)

(e) Open Electives (OE):

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Hrs/Wk</th>
<th>Credits</th>
<th>Preferred Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OE 01</td>
<td>Database Management Systems</td>
<td>3: 0: 2</td>
<td>4</td>
<td>V/VI</td>
</tr>
<tr>
<td>2</td>
<td>OE 02</td>
<td>Software Engineering</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V/VI</td>
</tr>
<tr>
<td>3</td>
<td>OE 03</td>
<td>Design and Analysis of Algorithms</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V/VI</td>
</tr>
<tr>
<td>4</td>
<td>OE 04</td>
<td>Disaster Management</td>
<td>3: 0: 0</td>
<td>3</td>
<td>IV/V</td>
</tr>
<tr>
<td>5</td>
<td>OE 05</td>
<td>Project Management</td>
<td>3: 0: 0</td>
<td>3</td>
<td>IV/V</td>
</tr>
<tr>
<td>6</td>
<td>OE 06</td>
<td>Engineering Risk–Benefit Analysis</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>7</td>
<td>OE 07</td>
<td>Infrastructure Systems Planning</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>8</td>
<td>OE 08</td>
<td>Planning for Sustainable Development</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>9</td>
<td>OE 09</td>
<td>Managing Innovation and Entrepreneurship</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>10</td>
<td>OE 10</td>
<td>Global Strategy and Technology</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>11</td>
<td>OE 11</td>
<td>Knowledge Management</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>12</td>
<td>OE 12</td>
<td>Rural Technology & Community Development</td>
<td>3: 0: 0</td>
<td>3</td>
<td>Vi/VII</td>
</tr>
<tr>
<td>13</td>
<td>OE 13</td>
<td>Artificial Intelligence and Robotics</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>14</td>
<td>OE 14</td>
<td>Cloud Computing</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>15</td>
<td>OE 15</td>
<td>Digital Communication</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>16</td>
<td>OE 16</td>
<td>Digital Signal Processing</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VI/VII</td>
</tr>
<tr>
<td>17</td>
<td>OE 17</td>
<td>Engineering System Analysis and Design</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>18</td>
<td>OE 18</td>
<td>Engineering System Design Optimization</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>19</td>
<td>OE 19</td>
<td>Engineering System Modeling and Simulation</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>20</td>
<td>OE 20</td>
<td>Game Theory with Engineering Applications</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
<tr>
<td>21</td>
<td>OE 21</td>
<td>Supply Chain Management-Planning</td>
<td>3: 0: 0</td>
<td>3</td>
<td>VII/VIII</td>
</tr>
</tbody>
</table>

19
(f) **Mandatory Courses (MC):**

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Hrs/Wk</th>
<th>Units</th>
<th>Preferred Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MC 01</td>
<td>Technical English</td>
<td>3: 0: 0</td>
<td>3</td>
<td>I/II</td>
</tr>
<tr>
<td>2</td>
<td>MC 02</td>
<td>Value Education, Human Rights and Legislative Procedures</td>
<td>3: 0: 0</td>
<td>3</td>
<td>I/II</td>
</tr>
<tr>
<td>3</td>
<td>MC 03</td>
<td>Environmental Studies</td>
<td>3: 0: 0</td>
<td>3</td>
<td>III/IV</td>
</tr>
<tr>
<td>4</td>
<td>MC 04</td>
<td>Energy Studies</td>
<td>3: 0: 0</td>
<td>3</td>
<td>III/IV</td>
</tr>
<tr>
<td>5</td>
<td>MC 05</td>
<td>Technical Communication & Soft Skills</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V/VI</td>
</tr>
<tr>
<td>6</td>
<td>MC 06</td>
<td>Foreign Language</td>
<td>3: 0: 0</td>
<td>3</td>
<td>V/VI</td>
</tr>
</tbody>
</table>
CHAPTER III
MODEL SYLLABI FOR COMMON COURSES

(a) HUMANITIES AND SOCIAL SCIENCES

HS 01: Sociology & Elements of Indian History for Engineers 3:0:0 [3]

The objective of this course is to familiarize the prospective engineers with elements of Indian history and sociological concepts and theories by which they could understand contemporary issues and problems in Indian society. The course would enable them to analyze critically the social processes of globalization, modernization and social change. All of this is a part of the quest to help the students imbibe such skills that will enhance them to be better citizens and human beings at their work place or in the family or in other social institutions.

Module 1A: Introduction to Elements of Indian History: What is history? ; History Sources-Archaeology, Numismatics, Epigraphy & Archival research; Methods used in History; History & historiography; (3 Lectures)

Module 1B: Introduction to sociological concepts-structure, system, organization, social institutions, Culture social stratification (caste, class, gender, power).State & civil society; (7 Lectures)

Module 2A: Indian history & periodization; evolution of urbanization process: first, second & third phase of urbanization; Evolution of polity; early states to empires; Understanding social structures-feudalism debate; (3 Lectures)

Module 2B: Understanding social structure and social processes: Perspectives of Marx, Weber & Durkheim; (7 Lectures)

Module 3A: From Feudalism to colonialism-the coming of British; Modernity & struggle for independence; (3 Lectures)

Module 3B: Political economy of Indian society. Industrial, Urban, Agrarian and Tribal society; Caste, Class, Ethnicity and Gender; Ecology and Environment; (9 Lectures)

Module 4A: Issues & concerns in post-colonial India (up to 1991); Issues & concerns in post-colonial India 2nd phase (LPG decade post 1991) (3 Lectures)

Module 4B: Social change in contemporary India: Modernization and globalization, Secularism and communalism, Nature of development, Processes of social exclusion and inclusion, Changing nature of work and organization (10 Lectures)
Text/Reference Books:

(a) History

1. Desai, A.R. (2005), Social Background of Indian Nationalism, Popular Prakashan
2. Guha, Ramachandra (2007), India After Gandhi, Pan Macmillan
3. Thapar, Romila (2002), Early India, Penguin
4. Sharma R.S.(1965), Indian Feudalism, Macmillan
6. Gadgil, Madhav & Ramachandra Guha(1993), This Fissured Land: An Ecological History of India, OU Press

(b) Sociology:

9. Xaxa, V (2008), State, Society and Tribes Pearson
12. Mohanty, M (ed.) (2004), Class, Caste & Gender- Volume 5, Sage
13. Dhanagare, D.N., Themes and Perspectives in Indian Sociology, Rawat

HS 02: Economics for Engineers

The objective of this course is to familiarize the prospective engineers with elementary principles of economics. It also deals with acquainting the students with standard concepts and tools that they are likely to find useful in their profession when employed in the firm/industry/corporation in public or private sector. It also seeks to create and awareness about the status of the current economic parameters /indicators/ policy debates. All of this is a part of the quest to help the students imbibe soft skills that will enhance their employability.

Module 3: Elements of Business/Managerial Economics and forms of organizations. Cost & Cost Control – Techniques, Types of Costs, Budgets, Break even Analysis, Capital Budgeting, Application of Linear Programming. Investment Analysis – NPV, ROI, IRR, Payback Period,

Text/Reference Books:

HS 03: Law for Engineers

The objective of the course is to familiarize students (Prospective engineers) with elementary knowledge of laws that would be of utility in their profession. The syllabus covers Constitution of India and new areas of law like IPR, ADR, Human Rights, Right to Information, Corporate law, Law relating Elections and Gender Studies. To be supplemented by the historical development of laws wherever required.

Module 1A: Constitutional Law covering the Preamble; Fundamental Rights, Judicial Activism including Equality and Social Justice, Life and Personal Liberty and Secularism and Religious freedoms; Directive principles of State policy; Fundamental Duties; Emergency provisions – kinds, legal requirements and legal effects; *(5 Lectures)*

Module 1B: Human Rights and Public International Law covering Human Rights in International Law-Theoretical foundation, human rights and international law; Historical development of human rights; Human Rights in Indian tradition and Western tradition; Covenant on Civil & Political Rights 1966 including Optional Protocol – I (Individual Complaint Mechanism) & Optional Protocol – II (Abolition of Death Penalty); Covenant on Economic, Social and Cultural Rights 1966 including Optional Protocol – I (2002); UN Mechanism and specialized agencies, (UNICEF, UNESCO, WHO, ILO, FAO, etc.); International NGOs – Amnesty International, Human Rights Watch, Greenpeace Foundation; Enforcement of Human Rights in India including Supreme Court, High Courts, Statutory Commissions – NHRC, NCW, NCM, NC-SCST etc. Public International Law, covering Introduction, Customs, Treaties, State territories including Recognition of States and governments, Law & Practice of Treaties and Law of Sea; *(5 Lectures)*

Module 2A: General Principles of Contract under Indian Contract Act, 1872 covering General principles of contract – Sec. 1 to 75 of Indian Contract Act and including Government. as contracting party, Kinds of government contracts and dispute settlement, Standard form contracts; nature, advantages, unilateral character, principles of protection against possibility of exploitation, judicial approach to such contracts, exemption clauses, clash between two standard form contracts; *(4 Lectures)*
Module 2B: Arbitration, Conciliation and ADR system covering Arbitration – meaning, scope and types – distinction between law of 1940 and 1996; UNCITRAL model law – Arbitration and expert determination; Extent of judicial intervention; International commercial arbitration; Arbitration agreements – essential and kinds, validity, reference and interim measures by court; Arbitration tribunal – appointment, challenge, jurisdiction of arbitral tribunal, powers, ground of challenge, procedure and court assistance; Award including Form and content, Grounds for setting aside an award, Enforcement, Appeal and Revision; Enforcement of foreign awards – New York Convention Awards and Geneva Convention Awards; Distinction between conciliation, negotiation, mediation and arbitration, confidentiality, resort to judicial proceedings, costs; (5 Lectures)

Module 3A: Law relating to Intellectual property covering Introduction – meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and Designs, Secrets; Other new forms such as plant varieties and geographical indications; International instruments on IP – Berne convention, Rome convention, TRIPS, Paris convention and international organizations relating IPRs, WIPO, WTO etc; Law relating to Copyright in India including Historical evolution of Copy Rights Act, 1957, Meaning of copyright – literary, dramatics and musical works, sound records and cinematographic films, computer programs, Ownership of copyrights and assignment, Criteria of infringement, Piracy in Internet – Remedies and procedures in India; Law relating to Trademarks under Trademark Act, 1999 including Rationale of protection of trademarks as Commercial aspect and Consumer rights, Trademarks, registration, procedures, Distinction between trademark and property mark, Doctrine of deceptive similarity, Passing off an infringement and remedies; Law relating to Patents under Patents Act, 1970 including Concept and historical perspective of patents law in India, Patenable inventions with special reference to biotechnology products, Patent protection for computer programs, Process of obtaining patent – application, examination, opposition and sealing of patents, Patent cooperation treaty and grounds for opposition, Rights and obligations of patentee, Duration of patents – law and policy considerations, Infringement and related remedies; (8 Lectures)

Module 3B: Right to Information Act, 2005 covering, Evolution and concept; Practice and procedures; Official Secret Act, 1923; Indian Evidence Act, 1872; Information Technology – legislation and procedures, Cyber crimes – issues and investigations; (3 Lectures)

Module 4A: Labour Laws, covering Industrial Disputes Act, 1947; Collective bargaining; Industrial Employment (Standing Orders) Act, 1946; Workmen’s Compensation Act, 1923; (3 Lectures)

Module 4B: Corporate Law, covering Meaning of corporation; Law relating to companies, public and private (Companies Act, 1956) general provisions; Law and multinational companies – International norms for control, FEMA 1999, collaboration agreements for technology transfer; Corporate liability, civil and criminal; (4 Lectures)

Module 4C: Election provisions under Indian Constitution (Art.324–329), covering Representation of Peoples Act and Prevention of Corruption Act, 1988; Superintendence, directions and control of elections to be vested in Election Commission; Prohibition as to ineligibility for inclusion in electoral roll on ground of religion, race, caste or sex; Election to the
house of people and to the legislative assemblies of States to be on the basis of adult suffrage;
Power of parliament to make provisions with respect to elections to legislatures; Power of
legislature of State to make provisions with respect to elections to such legislature; Bar to
interference by courts in electoral matters; Offences relating to elections under IPC 1860 (Sec.171-A to 171-I), Definition – candidate electoral rights, Bribery, undue influence and
impersonation at elections and punishments, False statement in connection with election, Illegal
payment in connection with election, Failure to keep election accounts; (4 Lectures)

Module 5: Gender Studies, covering Meaning of gender, international perspective and national
perspective; Laws relating women in India; Judicial approach and responses- Vishaka V/s State of
Rajasthan 1997 SC; Rights enforcement mechanism in India; Landmark judicial decisions of
Supreme Court relating to women; (4 Lectures)

Text/Reference Books:
Model Law on Arbitration*, Indian Council of Arbitration
& Maxwell
21. Bare text (2005), *Right to Information Act*
23. K.M. Desai(1946), *The Industrial Employment (Standing Orders) Act*
27. Sethna, *Indian Company Law*
32. Agnes Flavia(1999), *Law and Gender Inequality - The Politics of Women’s Rights in India*, OU Press
HS 04: Business Communication and Presentation Skills

The objective of this course is to develop communication competence in prospective engineers so that they are able to communicate information as well as their thoughts and ideas with clarity and precision. This course will also equip them with the basic skills required for a variety of practical applications of communication such as applying for a job, writing reports and proposals, facing an interview and participating in a group discussion. Further, it will make them aware of the new developments in technical communication that have become part of business organizations today.

Module 1A: Business communication covering, Role of communication in information age; concept and meaning of communication; skills necessary for technical communication; Communications in a technical organization; Barriers to the process of communication and solu; (3 Lectures)

Module 1B: Style and organization in technical communication covering, Listening, speaking, reading and writing as skills; Objectivity, clarity, precision as defining features of technical communication; Various types of business writing: Letters, reports, notes, memos; Language and format of various types of business letters; Language and style of reports; Report writing strategies; Analysis of a sample report; (4 Lectures)

Module 2A: Communication and personality development covering, Psychological aspects of communication, cognition as a part of communication; Emotional Intelligence; Politeness and Etiquette in communication; Cultural factors that influence communication; Mannerisms to be avoided in communication; Language and persuasion; Language and conflict resolution; (3 Lectures)

Module 2B: Language Laboratory emphasizing Listening and comprehension skills; Reading Skills; Sound Structure of English and intonation patterns; (5 Sessions)

Module 3A: Oral Presentation and professional speaking covering, Basics of English pronunciation; Elements of effective presentation; Body Language and use of voice during presentation; Connecting with the audience during presentation; Projecting a positive image while speaking; Planning and preparing a model presentation; Organizing the presentation to suit the audience and context; Basics of public speaking; Preparing for a speech; (3 Lectures)

Module 3B: Career Oriental Communication covering, Resume and biodata: Design & style; Applying for a job: Language and format of job application. Job Interviews: purpose and process; How to prepare for interviews; Language and style to be used in interview; Types of interview questions and how to answer them; Group Discussion: structure and dynamics; Techniques of effective participation in group discussion; Preparing for group discussion; (5 Lectures)

Module 3C: Advanced Techniques in Technical Communication covering, Interview through telephone/video-conferencing; Power-point presentation: structure and format; Using e-mail for business communication; Standard e-mail practices; Language in e-mail; Using internet for
collecting information; Referencing while using internet materials for project reports; Writing for the media; (2 Lectures)

Module 4: Language laboratory training in speaking skills covering oral presentations, mock interviews and model group discussions through the choice of appropriate programmes; (5 Sessions)

Text/Reference books:
2. Lesikar and petit, *Report writing for Business*
6. Malcolm Goodale, *Professional Presentations*
7. Farhathullah, T. M. *Communication skills for Technical Students*
9. Herta A. Murphy, *Effective Business Communication*
10. *MLA Handbook for Writers of Research Papers*

HS 05: Environmental Sciences

The syllabus of Environmental sciences provides an integrated, quantitative and interdisciplinary approach to the study of environmental systems. The students of Engineering undergoing this Course would develop a better understanding of human relationships, perceptions and policies towards the environment and focus on design and technology for improving environmental quality. Their exposure to subjects like understanding of earth processes, evaluating alternative energy systems, pollution control and mitigation, natural resource management and the effects of global climate change will help the students bring a systems approach to the analysis of environmental problems;

Module 1A: Concepts of Environmental Sciences covering, Environment, Levels of organizations in environment, Structure and functions in an ecosystem; Biosphere, its Origin and distribution on land, in water and in air, Broad nature of chemical composition of plants and animals; (3 Lectures)

Module 1B: Natural Resources covering Renewable and Non-renewable Resources, Forests, water, minerals, Food and land (with example of one case study); Energy, Growing energy needs, energy sources (conventional and alternative); (3 Lectures)

Module 2A: Biodiversity and its conservation covering, Biodiversity at global, national and local levels; India as a mega-diversity nation; Threats to biodiversity (biotic, abiotic stresses), and strategies for conservation; (3 Lectures)

Module 2B: Environmental Pollution covering, Types of pollution- Air, water (including urban, rural, marine), soil, noise, thermal, nuclear; Pollution prevention; Management of pollution-Rural/Urban/Industrial waste management [with case study of any one type, e.g., power (thermal/nuclear), fertilizer, tannin, leather, chemical, sugar], Solid/Liquid waste management, disaster management; (3 Lectures)
Module 2C: Environmental Biotechnology covering, Biotechnology for environmental protection- Biological indicators, bio-sensors; Remedial measures- Bio-remediation, phyto-remediation, bio-pesticides, bio-fertilizers; Bio-reactors- Design and application (3 Lectures)

Module 3A: Social Issues and Environment covering, Problems relating to urban environment- Population pressure, water scarcity, industrialization; remedial measures; Climate change- Reasons, effects (global warming, ozone layer depletion, acid rain) with one case study; Legal issues- Environmental legislation (Acts and issues involved), Environmental ethics; (5 Lectures)

Module 3B Environmental Monitoring covering, Monitoring- Identification of environmental problem, tools for monitoring (remote sensing, GIS); Sampling strategies- Air, water, soil sampling techniques (3 Lectures)

Module 4: Laboratory Work including Practical and Field Work covering, Plotting of biogeographical zones and expanse of territorial waters on the map of India; Identification of biological resources (plants, animals, birds) at a specific location; Determination of (i) pH value, (ii) water holding capacity and (iii) electrical conductivity of different types of soils; Determination of energy content of plants by bomb calorimeter; Measurement and classification of noise pollution; Determination of particulate matter from an industrial area by high volume sampler; Determination of ico-chemical parameters (pH, alkalinity, acidity, salinity, COD, BOD) of tap water, well water, rural water supply industrial effluent and sea water & potability issues; Demonstration of Remote Sensing and GIS methods; Industrial visit for environmental biotechnology processes (e.g., any one of the fermentation, tissue culture, pharmaceutical industries); (15 Sessions)
(b) BASIC SCIENCES

(i) Mathematics

BS 01: Elementary Mathematics for Engineers 2:0:0 [2]

The objective of this course is to familiarize the students with elements of mathematics. It acquaints the students with standard concepts and tools that will serve as building blocks towards tackling more advanced level of mathematics that they are likely to find useful in their profession when employed in the firm/industry/corporation in public or private sector. It also seeks to help the students imbibe/inculcate analytical rigor and discipline that is essential in any scientific endeavor. This is specially designed for students to help them bring to speed with other students who have already had some training in mathematics at the 12th Standard level.

Module 1: Elements of Logic covering, necessary and sufficient conditions, theorems and proofs (direct and contra positive); Sets and Functions – elementary set theoretic operations, De Morgan’s law, Convex sets, Relations and Correspondences, number systems; Modulus function (distance), sequences and series – convergence; Open and closed sets; Limits and Continuity; (10 Lectures)

Module 2: Differential and Integral Calculus covering, concept of a derivative, standard rules of differentiation (including elementary trigonometric and transcendental functions), total and partial derivatives, Young’s theorem, homogeneous functions, trace of a curve; Maxima and Minima; Integration– basic concept, definite and indefinite integral, standard rules of integration, partial integration; Ordinary (first order) differential equation; (10 Lectures)

Module 3: Linear Mathematics covering, Matrices (types and operations including elementary row and column operations), inverse; Determinants (rules of computation); Linear Equations and Cramer’s rule; Vector space (concepts of span/basis/dimension); Eigen values and Eigen vectors; Linear Programming (Graphical and Simplex solution); First order Difference equation (First order equations and solution); (10 Lectures)

BS 02: Multivariate Analysis, Linear Algebra and Special Functions 3:0:0 [3]

The objective of this course is to familiarize the prospective engineers with techniques in multivariate analysis, linear algebra and some useful special functions. It deals with acquainting the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their profession.

Module 1: Multivariate functions covering, limits, continuity and differentials, partial derivatives, maximum-minimum problems, Laangians, Chain rule; Double integrals, iterated integrals, triple integrals, line integrals, simple connected regions, Green’s theorem; Path independence, surface
integrals, Stokes theorem; Fourier series and integral, Dirichlet conditions, Parseval’s identity. The convolution theorem; (15 Lectures)

Module 2: Vectors covering, laws of vector algebra, operations- dot, cross, triple products; Vector function – limits, continuity and derivatives, geometric interpretation; Gradient, divergence and curl – formulae; Orthogonal curvilinear coordinates; Jacobians, gradient, divergence, curl and Laplacian in curvilinear coordinates; Special curvilinear coordinates; (15 Lectures)

Module 3: Gamma Beta and other Special Functions covering, the Gama function, values and graph, asymptotic formula for T(n); The Beta function – Dirichlet integral; Other special functions – Error function, exponential integral, sine and cosine integrals, Bessel’s differential equation and function (first and second kind), Legendre differential equation and polynomials; Some applications; (15 Lectures)

BS 03: Differential Equations

Differential equations play a major role in understanding many processes and systems that are of interest to the engineers in a generic sense. An in-depth understanding of the ordinary and higher order differential equation as well as partial differential equations are an absolutely essential part of the tool-kit of a well trained engineer. This course fills into this perceived need. The treatment should be informed by the fact that not only conceptual but also (and in some cases) more importantly numerical or computational methods are of essence.

Module 1: Differential equations of higher order, existence and uniqueness of solutions; Some engineering applications (mechanics and electric circuits); Numerical methods for solutions; (15 Lectures)

Module 2: General Linear Differential Equation of order n; Linear Operators; Fundamental theorem on linear differential equations; Solutions for constant coefficients; The non-operator techniques; The complementary solution of homogeneous equation, the particular solution; Method of reduction of order and inverse operators; Linear equations with variable coefficients; Simultaneous differential equations; Applications; (15 Lectures)

Module 3: Definitions; Linear Partial differential equations – some important equations, the heat equation, vibrating string, Laplace equation, longitudinal and transverse vibrations of a beam; Methods of solving boundary value problems; General solution, separation of variables; Laplace transform methods; (15 Lectures)

BS 04: Complex Analysis

The objective of this course is to familiarize the students, in some detail, about the analysis on Complex Number field. The central idea of analytic functions and the various series and transformations will find ready application in many branches of engineering.

Module 1: Complex Numbers covering, Functions Analysis including limits and continuity, derivatives; Cauchy Riemann Equations; Integrals, Cauchy theorem and Cauchy integral formulae;
Analytic Functions; Taylor’s series, Singular points and poles; Laurent’s Series, Residues, Residue Theorem; (10 Lectures)

Module 2: Evaluation of definite integrals covering, Conformal mapping, Riemann’s mapping theorem; Some general transformations, mapping a half plane into a circle; The Schwarz-Christoffel transformation; The solution of Laplace equation by conformal mapping; (10 Lectures)

Module 3: The complex inverse formula covering, the Bromwich contour, the use of Residue theorem in finding Laplace transforms; A sufficient condition for the integral around T to approach zero; The case of infinitely many singularities; Application to boundary value problems; (10 Lectures)

BS 05: Optimization and Calculus of Variations

This course deals with the extremely important topics under the broad umbrella of optimization. This is synonymous with efficiency which is the underlying prime rationale for all scientific and technological advances and progress.

Module 1: First and second order conditions for local interior optima (concavity and uniqueness), Sufficient conditions for unique global optima; Constrained optimization with Lagrange multipliers; Sufficient conditions for optima with equality and inequality constraints; Kuhn Tucker conditions, duality; (10 Lectures)

Module 2: Linear programming covering, Basic LPP – solution techniques (Simplex, Artificial Basis); Complimentary Slackness Theorem, Fundamental theorem of Duality; Degenerate solutions, Cycling; Applications; Elements of Dynamic Programming including Hamiltonian, Bellman’s Optimality Principle; (10 Lectures)

Module 3: Calculus of Variations covering, Basic definition, Simplest problem, Isoperimetric problem, Problems with Higher order derivatives, Euler Lagrange Equation, Weierstrass-Erdmann conditions; Pontryagin Maximum Principle; Transversality condition; Applications; (10 Lectures)

BS 06: Probability and Statistics

Uncertainty is ubiquitous. It is therefore essential to understand the techniques for handling and modeling it. This course is meant to provide a grounding in Statistics and foundational concepts that can be applied in modelling processes and decision making. These would come in handy for the prospective engineers in most branches.

Module 1: Mathematical Statistics covering, Population, Sample space, Events, Random Variables; Definitions of probability, conditional Probability, expectation and higher order moments, distributions (pdf), examples of (discrete and continuous) Normal, Poisson, Binomial distributions. Characteristic functions (mean and standard deviation); (10 Lectures)

Module 2: Regression covering, OLS (single and multivariate cases), Estimators and their properties (unbiased, consistent), Gauss-Markov Theorem; Limitations of OLS- Hetero-
sckedasticity, multi-collinearity; Limit theorems and convergence of random variables; (10 Lectures)

Module 3: Hypothesis testing covering, Types of Error, Power of a test, Goodness of a fit, Student t and Chi square; Sufficient Statistic and MLEs; Limit theorems and convergence of random variables; Elementary concepts related to stochastic processes; Forecasting and Modeling applications; (10 Lectures)

BS 07: Discrete Mathematics 2:0:0 [2]

Whereas continuous processes are analytically tractable in an elegant manner, most real life situations present themselves as comprising of discrete variables. It is therefore essential to have knowledge of discrete mathematics in one’s tool-kit. This course is meant to deeply familiarize the students with difference equations and their solution techniques. It also deals with concepts and techniques of graph theory, and Lattices apart from applications using optimal control and filters.

Module 1: Difference equations covering, first order, second order and nth order, with integer argument and their solutions; First order, second order, nth order, with continuous variables and their solutions; The state space form & Kalman-Bucy filter, Riccati Matrices (Equations) and applications; (15 Lectures)

Module 2: Graph theory covering, concepts and definitions, basic results, trees and cut sets; Definitions and basic results of Lattice theory; Basic Combinatorial analysis; Introduction to Number theory and applications to cryptography’ Finite Markov chains; (15 Lectures)

BS 08: Fuzzy Mathematics 2:0:0 [2]

Most of the mathematics and applications are based on ‘hard’ concepts from set theory. However in recent times, the idea of *fuzzy mathematics* has taken roots. Some of the advances in the arena have found applications in real-life problems related to design and functioning of systems. The course introduces the students to these developments and familiarizes them with conceptual underpinning and makes them aware of some interesting applications.

Module 1: Definition of a Fuzzy set; Elements of Fuzzy logic. Relations including, Operations, reflexivity, symmetry and transitivity; Pattern Classification based on fuzzy relations; Fuzzy analysis including metric spaces, distances between fuzzy sets, area perimeter, height, width of fuzzy subsets, continuity and integrals; Applications; (15 Lectures)

Module 2: Paths and connectedness; Clusters including cluster analysis and modelling information systems, applications; Connectivity in fuzzy graphs, application in database theory; Applications to neural networks; Fuzzy algebra including Fuzzy substructures of algebraic structures, Fuzzy subgroups, pattern recognition and coding theory; (15 Lectures)

Note Regarding Text/Reference Books:

Any book on Fundamental Methods of Mathematics for Engineers will work for the first course (Semester I- 2credit) and may be chosen as per the taste of the individual teacher and of course local availability. As far as the other courses
are concerned, there are umpteen books available (Marsden, Thromba and Weinstein/ Kreszig/ Sean Mauch/ Andrei Polyanin & Alexander Manzhioev (which is a handbook and can serve as a source book)/ Montgomery and Runger (for Statostics)/ John Mordeson & Premchand Nair (for Fuzzy Mathematics). Given that this is a course for Engineers with emphasis on application and computation and problem solving the relevant Book in Schaum Outline Series (especially the one by Murray Spiegel on Advanced Mathematics for Engineers) will do very well. Again the local availability and individual taste could well determine the particular text to be followed by an institution, provided it has the scope and the coverage intended.

(ii) Physics

The aim of courses in Physics is to provide an adequate exposure and develop insight about the basic principles of physics along with the possible applications. The acquaintance of basic physics principles would help engineers to understand the tools and techniques used in the industry and provide the necessary foundations for inculcating innovative approaches. This would create awareness about the vital role played by science and engineering in the development of new technologies. The courses would provide the necessary exposure to the practical aspects, which is an essential component for learning science.

BS 09: Applied Physics I

Module 1: Optics and Imaging covering, Ray Optics – Lens aberrations (chromatic, achromatic, spherical, distortion, astigmatism, coma), measures of correct aberrations; Interference – coherence (spatial, temporal) in thin films of uniform thickness (derivation); Diffraction Grating – use as a monochromator; Imaging including importance, types of imaging (microscopes, telescopes, cameras etc.); Classification (visible, IR, electron, magnetic, UV/X-rays, gamma rays, microwaves); Comparative study of different types of imaging (with respect to magnification, resolution, image quality, applications); Fiber Optics including Introduction, Optical fiber as a dielectric wave guide- total internal reflection, Numerical aperture and various fiber parameters, losses associated with optical fibers, step index and graded index fibers, application of optical fibers; (8 Lectures)

Module 2: Elastic Properties of materials and Waves and Vibrations covering, Relation between elastic constants, internal bending moment, bending of beams- cantilever, torsion of a cylinder, torsional rigidity; Simple harmonic motion – its expression and differential equation, superposition of two linear SHM’s (with same frequency), Lissajous’ figures; Damped vibration – differential equation and its solution, critical damping, Logarithmic decrement, Analogy with electric circuits; Forced vibration – differential equation, Amplitude and velocity resonance, Sharpness of resonance and Quality factor; (7 Lectures)

Module 3: Sound covering, Definitions: Velocity, frequency, wavelength, intensity, loudness (expression), timber, of sound, reflection of sound, echo; Reverberation, reverberation time, Sabine’s formula, remedies over reverberation; Absorption of sound, absorbent materials; Conditions for good acoustics of a building; Noise, its effects and remedies; Ultrasonics – Production of ultrasonics by Piezo-electric and magnetostriction; Detection of ultrasonics; Engineering applications of Ultrasonics (Non-destructive testing, cavitation, measurement of gauge); Infrasound – Seismography (concept only); (7 Lectures)
Module 4: Measurements and Errors covering Measurand, precision, accuracy, certainty, resolution; Errors - types and sources of errors (definitions and examples), Systematic error, Random error, Ambiguity error, Dynamic error, Drift, Noise; Elements of statistics including precision and variance; Propagation of error with example of Wheatstone bridge; Design of instrument/experiment, Specifications including Measurand, Utility of Measurand, Environment of instrument; Accomplishment of design including commercial availability of components, detectors, displays, energy sources etc; Estimation and minimization of errors in the design followed by implementation and testing; (8 Lectures)

Text/Reference Books:
1. Bottaccini M.R, C.E. Merill, Instruments and Measurements, Bell and Howell
3. Wehr & Richards, Physics of the Atom, Addison, Wesley
5. Eugene Hecht & A.R. Ganesan (2009), Optics, Pearson

BS 10: Applied Physics II 2:0:0 [2]

Module 1: Solid State Physics covering, Free electron theory (qualitative), Fermi energy, Fermi-Dirac distribution function (with derivation), Kronig-Penny model (qualitative) – formation of allowed and forbidden energy bands, Concept of effective mass – electrons and holes, Density of states (qualitative), Electron scattering and resistance, magneto-resistance, Hall effect (with derivation); Semiconductors and insulators – direct & indirect band gaps, Fermi level for intrinsic (derivation) and extrinsic semiconductors (dependence on temperature and doping concentration). Diffusion and drift current (qualitative), Conductivity and photoconductivity, Optical response; Classification of different types of diode on the basis of doping concentration (rectifier diode, Zener diode, tunnel diode); Concept of optoelectronics, Light Emitting Diode (as direct band gap material), solar cell, avalanche and photodiode; (7 Lectures)

Module 3: Introductory Quantum Mechanics covering, Concept of de Broglie’s Matter waves, derivation of wavelength of matter waves in different forms, Heisenberg’s Uncertainty principle, illustration- why an electron cannot exist in the nucleus; Concept of Phase velocity and Group velocity (qualitative); Concept of wave function Ψ and interpretation of $|\Psi|^2$; Schrödinger’s Time independent equation, Applications of Schrödinger’s equation (qualitative treatment) – a) Particle in one dimensional rigid box, b) Potential Barrier (emphasis on tunneling effect), tunnel diode, scanning-tunneling microscope c) Harmonic Oscillator, d) Hydrogen atom model (qualitative);
Selection rules; Elements of linear vector spaces- The idea of n – dimensional vector space, use of ‘bra-ket’ notation, linear independence, basis, inner product, norm of a vector; Hilbert space, Ortho normality; Matrix representation of kets and linear operators; Pauli matrices; Definitions of Hermitian, Inverse and Unitary operators; Commutators; Tensor products; (7 Lectures)

Module 4: Thermal Physics covering, Concept of Heat: Lattice vibrations – Einstein (individual) and Debye (collective), Boltzmann’s distribution; Definition of temperature in terms of Boltzmann’s distribution; Concept of entropy, specific heat; Attaining low temperature by variation of parameter X (like pressure, magnetic field etc.) in two steps- isothermal increase of X followed by adiabatic decrease of X. Example: a) Liquifaction of gas with X = Pressure; b) Adiabatic demagnetization; Transfer of heat by conduction, convection and radiation - Conduction in a) solids, b) liquids, c) gases, d) interfaces; Convection - heat and mass transfer; Radiation - Stefan’s law (statement and equation); Thermal diffusivity; Applications like, Insulation- Glass Dewar/Thermos flask, Superinsulation Dewar, High temperature furnaces; Heat pipes; Heat sinks and Forced cooling/Radiators; Heat exchangers; Solar water heater; (7 Lectures)

Text/Reference Books:
1. Kittel C., Introduction to Solid State Physics, Wiley Eastern
2. Laud B.B., Lasers and Non-Linear Optics, New Age Publications
5. Guy K. White, Experimental Techniques in Low Temperature Physics, Oxford Science Publications
6. Dobson K., D. Grace& D. Lovett, Physics, Collins

BS 11: Applied Physics Laboratory I

Module 1: Choice of three experiments from, Lens aberration; Comparison of reflectivity from plane glass and AR coated glass at different angles of incidence and different wavelengths of visible, infrared, ultraviolet light; Use of diffraction grating as a wavelength selector; Use of polarized light to detect strain; Resolving Power of circular aperture (for different diameters) (3 Sessions)

Module 2: Choice of three experiments from, Experiment on photoconductivity; Measurement of sound pressure level; Determination of velocity of ultrasonic waves using ultrasonic interferometer; Measurement of compressibility of liquid using ultrasonic interferometer; Determination of wavelength using acoustic grating; (3 Sessions)

Module 3: Choice of four experiments from, Determination of Planck’s constant using photocell; Characteristics of photocell; Estimation of errors in temperature / resistance measurement using Wheatstone bridge; Measurement of white noise in the resistance as a function of temperature and calibration against known thermometer and thus use a resistor as secondary noise thermometer; Temperature dependence of characteristics of semiconductor laser; Laser beam profile – to find beam divergence; (4 Sessions)

BS 12: Applied Physics III
Module 1: Electromagnetic Theory and Dielectrics covering, Coulomb’s law for distribution of charges, Polarization Gauss’s law, Electric current and equation of continuity, Magnetic induction and Lorentz force, Steady current and Biot-Savert law, Ampere’s law, Magnetization and magnetic intensity, Faraday's law of induction, Generalization of Ampere’s law, Maxwell’s equations; Introduction to dielectrics, Concept of Polarization; Dipole and dipole moment, Electric field due to dipole (without derivation); Depolarization field, depolarization factors, Local electric field at an atom, Lorentz field, Lorentz relation; Dielectric constant and polarizability – Clausius-Mossotti equation (with derivation); Types of polarization – electronic, ionic, dipolar, space charge; Temperature and frequency dependence of dielectric constant; (8 Lectures)

Module 2: Magnetism and Superconductivity covering, Magnetic field and Magnetization; Magnetic susceptibility, Paramagnetism - Paramagnetism due to partially filled shells, transition elements (3d), rare earths (4f) and actinides, Magnetization and total angular momentum (definition and relationship); Concept of magnetic moment, gyromagnetic ratio, Lande’s g-factor, Bohr Magneton, Curie’s Law – derivation for ‘spin only’ system (L = 0), expression for non-zero orbital angular momentum system (J = L + S); Ferromagnetism, antiferromagnetism, and ferrimagnetism; Exchange interaction between magnetic ions; Molecular field, Expression for Curie-Weiss law, concept of θ; Ferromagnetism and Ferrimagnetism – Curie temperature, hysteresis, Hard ferromagnets, permanent magnets – SmCo5, Nd2Fe14B, Sintered Alnico, Sintered Ferrite – 3 etc. – Comparison and applications; Soft ferromagnets –Permalloys, Ferrites etc. – Comparison and applications; Neel temperature, Curie-Weiss law; Magnetic resonance, NMR and MRI, MASER; Superconductivity - Zero resistance, Critical temperature T_c, Perfect diamagnetism, Meissner effect, Critical field H_c, Type I and Type II superconductors, Cooper pairs and formation of superconducting gap at Fermi level, Electron-Phonon interaction and BCS theory, Isotope effect, Applications – Superconducting magnets, Transmission lines, Josephson effect (DC & AC, qualitative), SQUID; (7 Lectures)

Module 3: Physics of Nanomaterials with prerequisites of wave mechanics and introductory quantum mechanics covering, Introduction – Nanoscale; Properties of nanomaterials- Optical (SPR, luminescence, tuning band gap of semiconductor nanoparticles), Electrical (SET), Magnetic, Structural, Mechanical; Brief description of different methods of synthesis of nanomaterials (physical - laser ablation, ball milling; chemical - vapor deposition, sol gel); Reduction of dimensionality, Quantum wells (two dimensional), Quantum wires (one dimensional), Quantum dots (zero dimensional); Density of states and energy spectrum for Zero dimensional solid, One dimensional quantum wire, Two dimensional potential well, Particle in a three dimensional box; Some special nanomaterials like, Aerogels – properties and applications, Carbon nanotubes - properties and applications, Core shell nanoparticles - properties and applications; Applications of nanomaterials: Electronics, Energy, Automobiles, Space, Medical, Textile, Cosmetics; Nanotechnology and Environment; (7 Lectures)

Module 4: Quantum Computation and Communication covering, the idea of ‘qubit’ and examples of single qubit logic gates- Classical bits, Qubit as a two level system; Bloch vector representation of state of qubit; Polarization states of photon and measurements; Pauli gates, Hadamard gate, Phase shift gate, Quantum gates as rotations in Bloch sphere; EPR paradox, concept of entanglement and Bell’s inequality- The paradox, joint state of entangled particles; Proof of Bell’s
inequality; Two-qubit controlled gates; entanglement generation and the Bell basis- Generic two-qubit state, Controlled-NOT gate; Quantum circuit for transforming computational basis to Bell basis; Qualitative discussion on the ‘circuit’ model of ‘quantum computation; An overview of classical cryptography: Vernam cypher; Public key cryptosystem; The ‘Rivest-Shamir-Adleman’ or ‘RSA’ protocol; Comments on No-cloning theorem and impossibility of faster-than-light transfer of information; The BB84 protocol in quantum cryptography- The protocol; its validity on the basis of Heisenberg’s uncertainty principle; Quantum Teleportation- Basic idea; measurement using Bell operator, need for classical communication channel; quantum circuit describing teleportation protocol; (8 Lectures)

Text/Reference Books:

BS 13: Applied Physics Laboratory II

Module 1: Choice of ten experiments from

- Determination of dielectric constant using ac or dc fields; Experiment on piezoelectricity – detection / determination of expansion on application of electric field; Ferroelectric hysteresis; Holography – Recording and reconstruction of hologram; Spectral analysis of He-Ne discharge tube; Newton’s Ring; Measurement of capacitance of different dielectric materials; Hall Effect and determination of Hall coefficient; Determination of energy band gap of semiconductor (diode/thermistor); Characteristics of solar cell at different intensities and determination of maximum workable power; Thermal conductivity of Al and SS (rods) –relative study; Thermal diffusivity of Al and SS (rods); Newton’s cooling law for Al rod and Al sheet with same mass; Thermal conductivity of insulator by Lee’s disc method; Relative thermal resistance of interface between two Aluminum plates by varying (i) surface roughness (ii) with and without conducting paste; Measurement of Magneto-resistance of semiconductors; (10 Sessions)

(iii) Chemistry

The purpose of these courses is to emphasize the relevance of fundamentals and applications of chemical sciences in the field of *engineering*. Thus, the courses have been conceived in such a way that they take into account appropriate combinations of old and new emerging concepts in the chemical sciences area and their current and potential uses in *engineering*. The Courses attempt to address the principles of general chemistry and specific topics relevant to various engineering disciplines, wherein the students can apply this learning in their respective areas of expertise. The modular courses (8 credits, in all) have been split into two courses, the first one giving the concepts in general chemistry followed by laboratory experiments, designed to give hands on experience of various analytical techniques and associated calculations. In the second course, the focus is more on the application of the basic concepts with introduction of some advanced concepts in the area of chemical sciences relevant to *engineering*.
Module 1: Water covering, Types of hardness- Units, Determination of hardness by EDTA method, Alkalinity of water and its significance, Numerical problems. Softening methods and Numerical problems based on these methods; Membrane-based processes; Problems with Boiler feed water and its treatments, Specifications for drinking water (BIS and WHO standards), Chlorination of Water; Sources and quality of drinking water, concept of water drainage systems; Concept of water harvesting, storage and recycling; Nature and uses of sludge obtained on treatment of municipal and industrial effluent water, role of a-forestation for water recycling; Toxicity of water; Sources of water pollutants, water pollution through analytical laboratories in schools, colleges and universities, measures for minimization and recycling of laboratory waste water. (10 Lectures)

Module 2: Polymers & Composites covering, Basics of Polymer Chemistry, Molecular weight, Molecular shape, Crystallinity, Glass transition temperature and melting point, Visco-elasticity, Structure-property relationship; Methods of polymerization, Thermoplastics and Thermo-sets, Copolymerization, Elastomers-Structure, Applications, curing techniques; Advanced polymeric materials; Conducting polymers, Liquid crystal properties. Dendrimers and their difference from polymers, degradable polymer materials, solubility of polymeric & dendrimeric molecules, physicochemical properties of polymers; Fabrication of polymers-Compression/Injection/Extrusion moulding. Synthesis, Properties and Uses of PE, PVC, PMMA, Formaldehyde resins; Melamine-formaldehyde-urea resins, adhesives and their adhesive mechanism; Composites- Basics of composites, Composition and Characteristic properties of composites; Types of Composites- Particle, Fibre, Reinforced, Structural, & their applications; Metallic and non-metallic fillers, molecular and oligomerization mechanism, nano-composites. (10 Lectures)

Module 3: Surfactants and Lubricants covering, Surface active agents- Methods of preparation of soap, Cleaning mechanism, Types and advantages of detergents; Critical miceller concentration, hydrophilic and hydrophilic interactions. Fricoohestiy of surfactant solutions, HLB values; Lubricants- Concept of tribology; Types of lubricants and Mechanism of lubrication, Physical and Chemical properties of lubricants, Additives of lubricants, Selection of lubricants, freezing points of lubricants. (6 Lectures)

Module 4: Biotechnology covering, Significance and application of Biotechnology, Bio-reactors, Biotechnological processes; Fermentation, Production of Alcohol, Production of Vitamins; Industrial enzymes, Bio-fuels, Biosensors, Bio-fertilizers, Bio-surfactants; Applications of Biochips; Intra-molecular multiple force theory (IMMFT) of Bio-surfactants. (6 Lectures)

Module 5: Green Chemistry covering, Introduction, Significance and latest research in this field; Various Industrial applications of green chemistry; Green technology- Latest green laboratory technology for saving experimental resources and infrastructural framework; R4M4 (Reduce, Reuse, Recycle, Redesign; Multipurpose, Multidimensional, Multitasking, Multi-tracking;) model with special reference of survisimeter, econoburette; Safer Technique for Sustainable Sodium
Extract Preparation for Extra Elements Detection; Concept of molecular and atomic economy & its use in green chemistry; Life cycle analysis technique (cradle to grave approach) (6 Lectures)

Module 6: Instrumental Techniques covering, Fundamentals of Spectroscopy; Principles and applications of UV-visible, IR & Atomic absorption Spectroscopy; Flame photometry; Principles and applications of chromatographic techniques including Gas, Column, HPLC. NMR & DSC working. (7 Lectures)

Text/Reference Books:

BS 15: Chemistry Laboratory I 0:0:2 [1]

Module 1: Choice of ten experiments from, Total Hardness of Water; Determination of carbonate and non carbonate hardness of water sample; Determination of Alkalinity of water sample; Chloride Content in Water; Residual Chlorine in Tap water; Method of removal of hardness of water using ion exchange column; Saponification Value of an Oil; Acid value of an Oil; Viscosity Index and surface tension determination together; Flash Point by Abel’s Apparatus; Flash Point by Pensky-Marten’s Apparatus; Determination of Viscosity of polymer solution using survismeter; Demonstration of TLC / Paper chromatograph. (10 Sessions)

Module 2: Experiments to be demonstrated: Green Tech titration for experimental resource saving in analytical lab using econoburette, semi micro technique based measurement; Determination of water binding capacity of few toxic metal salts, dyes and carcinogenic compounds like pyridine and benzene using survismeter; Determination of friccohesity of oil samples with Survismeter; Comparative water binding capacity of Bovine serum albumin protein, NaCl salt and glucose as carbohydrate molecules with survismeter protein denoturation – precipitation; Friccohesity determination of band locations of glycine, α-alanine and β-alanine in aqueous mixture; Green Tech method of viscosity & surface tension measurements together with survismeter; Determination of viscosity and surface tension together of polymer solution using survismeter; Determination of wetting coefficient and contact angle measurement of soap and detergent using survismeter; Viscosity average molecular weight and shape determination using survismeter; Determination of mutual mixing & emulsion quality of oil and water liquid-liquid-interfaces (LLI) with survismeter; Potentionmetric Titrati/Redox potential

BS 16: Chemistry II 3:0:0 [3]

Module 1: Electrochemistry covering, Conductance, Cell constant and its determination; Single electrode potentials, Electrolytic and Galvanic cells, EMF series, Nernst equation, Cell emf
measurement, Reversible and irreversible cells; Thermodynamic overview of electrochemical processes. (6 Lectures)

Module 2: Corrosion covering, Definition and scope of corrosion, Direct chemical corrosion, Electrochemical corrosion and its mechanisms; Types of electrochemical corrosion, (differential aeration, galvanic, concentration cell); Typical Electrochemical corrosion like Pitting, Intergranular, Soil, Waterline; Factors affecting corrosion, Protection of corrosion, Applications with few practical problems of corrosion; Permeability of oxygen to patch forming materials, scaling of iron materials. (8 Lectures)

Module 3: Energy Sciences covering, Fuels [Conventional] – Types of fuels, Calorific value, Determination of Calorific value, Numerical problems based on it; Analysis of coal, Refining of Petroleum, Liquid fuels, Fuels for IC engines, Knocking and anti-knock agents, Octane and Cetane values, Cracking of oils; Calorie value of semisolids fuels; Alternative sources of Energy – Limitations of fossil fuels, Non-conventional sources of energy- Solar, Wind, Geo, Hydro power and biomass; Advantages and disadvantages; Nuclear Energy production from nuclear reactions, Nuclear reactor, Nuclear fuel cycles, Nuclear waste disposal; Safety measures of Nuclear reactors; Battery technology – Fundamentals of primary cells, Rechargeable batteries, Ni-Cd, Ni-metal hydride, Li-ion batteries; Fuel cells- principles, applications, advantages/disadvantages; Stable current supply & life of battery. (10 Lectures)

Module 4: Nanomaterials covering, Introduction, Fullerenes, Carbon nanotubes, Nanowires; Electronic and mechanical properties; Synthesis of nanomaterials; Topdown & bottom up approach; Applications of nanomaterials–Catalysis, Electronics & Telecommunication, Medicines, Composites, Energy sciences; Fundamentals of nanomaterials. (6 Lectures)

Module 5: Environmental Chemistry covering, Air pollution; Noise pollution, optimum decibel levels; Water pollution; Determination and Significance of COD and BOD; TOC Numerical problems; Solid waste treatment and collection of NKP; Green house effect and Global warming; e-Waste and Radioactive pollution; Role of electromagnetic radiation in global warming. (10 Lectures)

Module 6: Metals & Alloys covering, Phase Rule, phase rule applications to one and multiple component systems; Iron-Carbon phase equilibrium diagram; Types of Alloys- ferrous and nonferrous alloys, Carbon steel, Alloy steel, Alloys of Cu, Al, Pb. (5 Lectures)

Text/Reference Books:

(iv) Biology
Biology is the scientific exploration of the vast and diverse world of living organisms; an exploration that has expanded enormously within the last four decades revealing a wealth of knowledge about ourselves and about the millions of other organisms with whom we share this planet Earth. The study of biology has an immediate relevance to our daily lives. It is important for everyone to develop an informed sense of how we may individually and collectively continue to fit into the complex ecology of our planet without rendering horrendous destruction. Some of the greatest engineering feats of the future are likely to involve bioengineering projects, particularly concerning the disposal of municipal and industrial wastes and the development of renewable resources. The Engineering students by studying Biology - both at elementary and advanced levels will get exposure to the functions and interactions of biological systems from qualitative and quantitative perspective. This syllabus is a part of the quest to help future generation Engineers apply engineering knowledge for achieving sustainable future. This syllabus is a part of the quest to help future generation engineers apply engineering knowledge for achieving a sustainable future.

BS 17: Elementary Biology

Module 1A: Concepts in Biology covering, Chemical foundations and basic chemistry of cell-Carbon compounds and cell as a unit of life; Physical and chemical principles involved in maintenance of life processes; Scientific methods- Microscopy (principles and applications); (3 Lectures)

Module 1B: Cell structure and functions covering, Ultra-structure and functions of cellular components- Prokaryotic and Eukaryotic cells, cell wall, plasma membrane, endoplasmic reticulum; Biomolecules- Carbohydrates, Lipids, Amino Acids, Proteins, Nucleic acids; Tissue systems- Overview of animal and plant tissue systems; (3 Lectures)

Module 2A: Metabolisms covering Bio-membranes, diffusion, absorption, osmo-regulation; Photosynthesis and respiration; (3 Lectures)

Module 2B: Chromosomes and Cell Divisions covering, Morphology of chromosomes; Cell theory- Cell cycle and phases; Mitosis and meiosis; (4 Lectures)

Module 3A: Genetics covering, Laws of heredity- Biological indicators, bio-censors; Mutations-Cause, types and effects on species; (3 Lectures)

Module 3B: Organic Evolution covering, Origin of life- Haldane and Oparins concepts; Modern concept of natural selection and speciation- Lamarkism, Darwinism/Neo-Darwinism; (4 Lectures)

Module 4: Plant and Animal Classification covering, Plant classification: Benthem and Hooker’s classification with examples of economically important plants; Animal classification- Linnaean hierarchy of animal kingdom; (3 Lectures)

Module 5: Laboratory Sessions covering, Laboratory safety and scientific measurements (metric); Structure and function of simple compound microscope; Study of unicellular organisms - gram staining for bacteria, cell structure of Paramocium, Anaebena or Nostoc; Demonstration
Practical: Study of photosynthesis (using Hydrilla) and respiration (with germinating seeds), Cyclosis in Dicotyledonous leaf; Study of Mitosis using Onion or Garlic root-tip; Study of Karyotypes of normal and abnormal human cells, study of syndromes (Down’s syndrome, Turner’s syndrome); Demonstration/ Instructor’s choice- Natural Selection Survivorship using ‘forest’ as a model; Metabolism- Study of diffusion and osmosis using plant samples; Plant classification- 10 locally available species (with an option of Field Visit to a Botanical Garden); Animal classification using 10 species; (15 Sessions)

BS I8: Advanced Biology I

Module 1A: Introduction to Microbiology covering, Microbial diversity: Prokaryotes, Eukaryotes, Archaeabacteria; Impact of micro-organisms: Impact on industry, agriculture and health; (4 Lectures)

Module 1B: Industrial Microbiology covering, Primary and secondary screening of microorganisms, fermentation processes, bioreactors; Microbial Ecology- Principals of microbial ecology, Microbial bio-remediation; Medical Microbiology: Microbial diseases (air-borne, food-borne, sexually transmitted diseases), epidemiology and public health; (4 Lectures)

Module 2A: Animal Physiology covering, Nutrition and digestion; Excretion and circulation; (3 Lectures)

Module 2B: Reproductive Biology covering, Reproduction: Asexual and sexual reproduction; Human reproductive system: An overview; Embryonic development, Assisted Reproductive Technology (ART); (3 Lectures)

Module 3A: Immunology covering, Human immune mechanism- Types of immunities; Antigen/Antibody reactions- Applications in human health; Immunological disorders: Auto-immune diseases; (3 Lectures)

Module 3B: Biochemistry covering, Amino acids & Proteins- Classification based on function and structure; Protein synthesis- Components and regulatory mechanisms; Enzymes- An overview; (3 Lectures)

Module 4: Biological Techniques covering, Separation of organelles- Centrifugation; Separation of macromolecules- Chromatography, electrophoresis; Colourimetry; (3 Lectures)

Module 5: Laboratory & Field Work Sessions covering, Streak plating, Spread plate and bulk seed of micro-organisms- determination of viable count; Wine making experiment from fruit source; Dissection of digestive system of an animal (cockroach or earthworm); Amylase estimation from different organisms; Institutional visit to Assisted Reproductive Technology (ART) Facility (any Hospital); Total RBC, WBC count and Platelet count/ Determination of Blood Group; Determination of KM value of Amylase and to study effect of temperature and pH on the same; Thin Layer Chromatography to separate plant pigments; Circular Paper Chromatography to separate sugars; Separation of Proteins by Gel Electrophoresis (15 Sessions)
Module 1A: Plant Physiology covering, Transpiration; Mineral nutrition (3 Lectures)

Module 1B: Ecology covering, Ecosystems- Components, types, flow of matter and energy in an ecosystem; Community ecology- Characteristics, frequency, life forms, and biological spectrum; Ecosystem structure- Biotic and a-biotic factors, food chain, food web, ecological pyramids; (3 Lectures)

Module 2A: Population Dynamics covering, Population ecology- Population characteristics, ecotypes; Population genetics- Concept of gene pool and genetic diversity in populations, polymorphism and heterogeneity; (3 Lectures)

Module 2B: Environmental Management covering, Principles: Perspectives, concerns and management strategies; Policies and legal aspects- Environment Protection Acts and modification, International Treaties; Environmental Impact Assessment- Case studies (International Airport, thermal power plant); (3 Lectures)

Module 3A: Molecular Genetics covering, Structures of DNA and RNA; Concept of Gene, Gene regulation, e.g., Operon concept; (3 Lectures)

Module 3B: Biotechnology covering, Basic concepts: Totipotency and Cell manipulation; Plant & Animal tissue culture- Methods and uses in agriculture, medicine and health; Recombinant DNA Technology- Techniques and applications; (3 Lectures)

Module 4A: Biostatistics covering, Introduction to Biostatistics:-Terms used, types of data; Measures of Central Tendencies- Mean, Median, Mode, Normal and Skewed distributions; Analysis of Data- Hypothesis testing and ANNOVA (single factor) (4 Lectures)

Module 5: Laboratory & Fieldwork Sessions covering, Comparison of stomatal index in different plants; Study of mineral crystals in plants; Determination of diversity indices in plant communities; To construct ecological pyramids of population sizes in an ecosystem; Determination of Importance Value Index of a species in a plant community; Seminar (with PPTs) on EIA of a Mega-Project (e.g., Airport, Thermal/Nuclear Power Plant/ Oil spill scenario); Preparation and extraction of genomic DNA and determination of yield by UV absorbance; Isolation of Plasmid DNA and its separation by Gel Electrophoresis; Data analysis using Bio-statistical tools; (15 Sessions)
The objective of this Course is to provide the basic knowledge about Engineering Drawing. Detailed concepts are given in projections, technical drawing, dimensioning and specifications, so useful for a student in preparing for an engineering career.

Module 1: Introduction to Engineering Drawing covering, Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

Module 2: Orthographic Projections covering, Principles of Orthographic Projections - Conventions - Projections of Points and lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;

Module 3: Projections of Regular Solids covering, those inclined to both the Planes- Auxiliary Views;

Module 4: Sections and Sectional Views of Right Angular Solids covering, Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;

Module 5: Isometric Projections covering, Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

Text/Reference Books:

The objective of this practical Course is to provide the basic concepts about tools used in an Engineering Workshop. Detailed concepts are proposed in all the major trades of current interest. It is expected that at least 6 experiments need to be conducted from each of the Modules, as listed below.

Module 1: Mechanical Engineering covering, the following trades for experiments (with a minimum of two exercises under each trade) - Carpentry, Fitting, Tin-Smithy and Development of
jobs carried out and soldering, Black Smithy, House Wiring, Foundry (Moulding only), Plumbing; (6 Sessions)

Module 2: Mechanical Engineering covering, the following trades for demonstration for exposure - Power tools in Construction, Wood working, Electrical and Mechanical Engineering practices; (2 Sessions)

Module 3: Information Technology covering, Hardware Experiments- Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral; Task 2: Disassemble and assemble the PC back to working condition; Task 3: Install MS windows and Linux on the personal computer and configure to dual boot the system; Task 4: Troubleshooting: Students to be given a PC which does not boot due to improper assembly or defective peripherals and system software problems. To identify the problem and fix it to get the PC back to working condition; Software Experiments- Task 5: Students to get connected to their Local Area Network and access the Internet. In the process to configure the TCP/IP setting, access the websites and email; Task 6: Productivity Tools- Use Office Tools Word, Excel for creating Scheduler, Calculating GPA, basic Power Point utilities and tools which help to create basic Power Point Presentation as well as interactive Presentation using Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts; (7 Sessions)

Text/Reference Books:
4. Gupta, Vikas (2010), Comdex Information Technology Course Tool Kit - WILEY Dreamtech

ES 03: Materials Science

Module 1: Crystal Structure covering, Atomic structure and inter-atomic bonding; Structure of crystalline solids; Lattices, unit cells; Crystal systems, Bravais lattices; Indexing of directions and planes, notations, Inter-planar spacings and angles, co-ordination number, packing factors;

Module 2: Defects in Crystals covering, Point defects; Dislocations, Types of dislocations, Burgers vector and its representation; Planar defects, stacking faults, twins, grain boundaries;

Module 4: Mechanical Properties of Materials covering, Concepts of stress and strain, Stress-Strain diagrams; Properties obtained from the Tensile test; Elastic deformation, Plastic deformation. Impact Properties, Strain rate effects and Impact behaviour. Hardness of materials;

Module 5: Magnetic Materials covering, Introduction, Magnetic fields or quantities, types of magnetism, classification of magnetic materials, soft magnetic materials, H magnetic materials, Ferrites, Ferro, Para Magnetic materials; Nano Materials covering, Introduction – Nano material preparation, purification, sintering nano particles of Alumina and Zirconia, Silicon carbide, nano-op, nano-magnetic, nano-electronic, and other important nano materials;

Text/Reference Books:

The objective of this Course is to provide an introductory treatment of Engineering Mechanics to all the students of engineering, with a view to prepare a good foundation for taking up advanced courses in the area in the subsequent semesters.

Module 2: Friction covering, Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack;

Module 3: Centroid and Centre of Gravity covering, Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook;

Module 4: Introduction to Dynamics covering, Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D’Alembert’s principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation;

Module 5: Mechanical Vibrations covering, Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums;
ES 05: Basic Electrical Engineering

The objective of this Course is to provide the students with an introductory and broad treatment of the field of Electrical Engineering.

Module 1: D. C. Circuits covering, Ohm's Law and Kirchhoff’s Laws; Analysis of series, parallel and series-parallel circuits excited by independent voltage sources; Power and energy; Electromagnetism covering, Faradays Laws, Lenz's Law, Fleming's Rules, Statically and dynamically induced EMF; Concepts of self inductance, mutual inductance and coefficient of coupling; Energy stored in magnetic fields;

Module 2: Single Phase A.C. Circuits covering, Generation of sinusoidal voltage- definition of average value, root mean square value, form factor and peak factor of sinusoidal voltage and current and phasor representation of alternating quantities; Analysis with phasor diagrams of R, L, C, RL, RC and RLC circuits; Real power, reactive power, apparent power and power factor, series, parallel and series-parallel circuits; Three Phase A.C. Circuits covering, Necessity and Advantages of three phase systems, Generation of three phase power, definition of Phase sequence, balanced supply and balanced load; Relationship between line and phase values of balanced star and delta connections; Power in balanced three phase circuits, measurement of power by two wattmeter method;

Module 3: Transformers covering, Principle of operation and construction of single phase transformers (core and shell types), EMF equation, losses, efficiency and voltage regulation; Synchronous Generators covering, Principle of operation; Types and constructional features; EMF equation;

Module 4: DC Machines covering, Working principle of DC machine as a generator and a motor; Types and constructional features; EMF equation of generator, relation between EMF induced and terminal voltage enumerating the brush drop and drop due to armature reaction; DC motor working principle; Back EMF and its significance, torque equation; Types of D.C. motors, characteristics and applications; Necessity of a starter for DC motor;

Module 5: Three Phase Induction Motors covering; Concept of rotating magnetic field; Principle of operation, types and constructional features; Slip and its significance; Applications of squirrel cage and slip ring motors; Necessity of a starter, star-delta starter.

Module 6: Sources of Electrical Power covering, Introduction to Wind, Solar, Fuel cell, Tidal, Geo-thermal, Hydroelectric, Thermal-steam, diesel, gas, nuclear power plants; Concept of cogeneration, and distributed generation;

Text/Reference Books:

Text/Reference Books:

ES 06: Basic Electrical Engineering Laboratory

Module 1: Laboratory Sessions covering, General introduction to Electrical Engineering Laboratory, experimental set-ups, instruments etc; Introduction to domestic wiring, service mains, meter board and distribution board; Wiring of two-way and three-way switching of lamp; Use of Fuse and Miniature Circuit breaker; Electric Shocks and precautions against shocks; Basic methods of Earthing; Verification of Kirchhoff’s Voltage Law and Kirchhoff’s Current Law; Serial and Parallel resonance- Tuning, Resonant frequency, Bandwidth and Q factor determination for RLC network; Measurement of active and reactive power in balanced 3-phase circuit using two-watt meter method; Polarity and Ratio Test for single Phase Transformer; Predetermination of efficiency and regulation by Open Circuit and Short circuit tests on single - phase transformer; Speed control of Induction Motor using rotor resistance; (15 Sessions)

Text/Reference Books:
1. Tarnekar, S.G. A Textbook of Laboratory Course in Electrical Engineering S Chand Publications

ES 07: Basic Electronics Engineering

The objective of this Course is to provide the students with an introductory and broad treatment of the field of Electronics Engineering.

Module1: Diodes and Applications covering, Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Breakdown Mechanisms, Zener Diode – Operation and Applications; Opto-Electronic Devices – LEDs, Photo Diode and Applications; Silicon Controlled Rectifier (SCR) – Operation, Construction, Characteristics, Ratings, Applications;

Module 2: Transistor Characteristics covering, Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Voltage Divider Bias Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Depletion and Enhancement type Metal Oxide Semiconductor (MOS) FETs, Introduction to CMOS circuits;

Module 3: Transistor Amplifiers and Oscillators covering, Classification, Small Signal Amplifiers – Basic Features, Common Emitter Amplifier, Coupling and Bypass Capacitors, Distortion, AC Equivalent Circuit; Feedback Amplifiers – Principle, Advantages of Negative Feedback, Topologies, Current Series and Voltage Series Feedback Amplifiers; Oscillators – Classification, RC Phase Shift, Wien Bridge, High Frequency LC and Non-Sinusoidal type Oscillators;
Module 4: Operational Amplifiers and Applications covering, Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal OpAmp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator;

Module 5: Timers and Data Converters covering, IC 555 Timer – Block Diagram, Astable and Monostable Multivibrator Configurations; Data Converters – Basic Principle of Analogue–Digital (ADC) and Digital-to-Analogue (DAC) Conversion, Flash type, Counter-ramp type and Successive Approximation type ADCs, Resistor Ladder Type DAC, Specifications of ADC and DAC;

Module 6: Basic Digital Electronics covering, Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolean Algebra, De Morgan’s Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Master-Slave Configurations; Counters – Asynchronous, Synchronous, Ripple, Non-Binary, BCD Decade types; Shift Registers – Right-Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Shift Registers; Applications;

Text/Reference Books:
2. Santiram Kal (2002), Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India
3. David A. Bell (2008), Electronic Devices and Circuits, Oxford University Press
5. R. S. Sedha (2010), A Text Book of Electronic Devices and Circuits, S.Chand & Co.

ES 08: Basic Electronics Engineering Laboratory 0:0:2 [1]

Module 1: Laboratory Sessions covering, Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Switches (SPDT, DPDT and DIP), Bread Boards and Printed Circuit Boards (PCBs); Identification, Specifications, Testing of Active Devices – Diodes, BJTs, JFETs, MOSFETs, Power Transistors, SCRs and LEDs;

Module 2: Study and Operation of Digital Multi Meter, Function / Signal Generator, Regulated Power Supply (RPS), Cathode Ray Oscilloscopes; Amplitude, Phase and Frequency of Sinusoidal Signals using Lissajous Patterns on CRO; (CRO);

Module 4: Study of Half Wave and Full Wave Rectification, Regulation with Filters, Gain and Bandwidth of BJT Common Emitter (CE) Amplifier, Gain and Bandwidth of JFET Common Source (CS) Amplifier, Gain and Bandwidth of BJT Current Series and Voltage Series Feedback Amplifiers, Oscillation Frequency of BJT based RC Phase Shift, Hartley and Colpitts Oscillators;
Module 5: Op-Amp Applications – Adder, Subtractor, Voltage Follower and Comparator; Op-Amp Applications – Differentiator and Integrator, Square Wave and Triangular Wave Generation, Applications of 555 Timer – Astable and Monostable Multivibrators;

Module 6: Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR Integrated Circuits (ICs); Truth Tables and Functionality of Flip-Flops – SR, JK and D Flip-Flop ICs; Serial-In-Serial-Out and Serial-In-Parallel-Out Shift operations using 4-bit/8-bit Shift Register ICs; Functionality of Up-Down / Decade Counter ICs; (15 Sessions)

Text/Reference Books:
1. David. A. Bell (2003), Laboratory Manual for Electronic Devices and Circuits, Prentice Hall, India
2. Thomas L. Floyd and R. P. Jain (2009), Digital Fundamentals by Pearson Education,

ES 09: Computer Programming

Module 1: Introduction covering, Introduction to computer organization; Evolution of Operating Systems; Machine languages, Assembly Languages and High Level Languages; Key Software and Hardware Trends, Procedural & Object Oriented Programming Methodologies; Program Development in C, Structured Programming - Algorithm, Pseudo-code; The C Standard Library, Data types in C, Arithmetic operators, Control Structures – If-else, While, for, do-while, Switch, break and continue statements; Formatted input-output for printing Integers, floating point numbers, characters and strings; Simple C Programming examples;

Module 2: Designing Structured Programs in C covering, Top Down Design and Stepwise refinement; Program Modules in C, Math Library Functions, Function Definition, Prototypes; Header files, Parameter passing in C, Call by Value and Call by Reference; Standard functions, Recursive functions, Preprocessor commands, Example C programs; Scope, Storage classes; Arrays covering, Declaring arrays in C, Passing arrays to functions, Array applications, Two – dimensional arrays, Multidimensional arrays, C program examples;

Module 3: Pointers in C covering, Pointer variable declaration and Initialization. Pointer operators, Pointer expressions and Arithmetic, Relationship between pointers and arrays; Strings including Concepts, String Conversion functions, C Strings, String Manipulation Functions and String Handling Library;

Module 4: Derived types covering, Structures – Declaration, definition and initialization of structures, accessing structures, structures in functions, self referential structures, unions; Data Structures including Introduction to Data Structures, Stacks, Queues, Trees, representation using arrays, Insertion and deletion operations;

Module 5: Dynamic Memory Allocation covering Linked List Implementation, Insertion, Deletion and Searching operations on linear list; Searching and Sorting – Sorting- selection sort, bubble sort, insertion sort, quick sort, merge sort, Searching-linear and binary search methods;

Text/Reference Books:
1. Dietel & Dietel (2000), C – How to Program, Pearson Education

ES10: Computer Programming Laboratory

Laboratory Sessions covering the following exercises:

Module 1: To write a C program in each case, to find the sum of individual digits of a positive integer, generate the first n terms of the Fibonacci sequence and generate all the prime numbers between 1 and n, where n is a value supplied by the user; to calculate the Sum = 1-x^2/2! +x^4/4!-x^6/6!+x^8/8!-x^10/10!

Module 2: To write C programs that use both recursive and non-recursive functions, To find the factorial of a given integer and To find the GCD (greatest common divisor) of two given integers; Also, to write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement) and to write a C program that uses functions to perform the Addition of Two Matrices and Multiplication of Two Matrices;

Module 3: To write a C program that uses functions to perform the operations: To insert a substring in to a given main string from a given position; To delete n Characters from a given position in a given string; To write a C program to determine if the given string is a palindrome or not; Also to write a C program that displays the position or index in the string S where the string T begins, or – 1 if S doesn’t contain T; To write a C program to count the lines, words and characters in a given text.

Module 4: To write a C program to generate Pascal’s triangle and also to construct a pyramid of numbers; Also to write a C program that uses functions to perform the following operations on singly linked list: Creation, Insertion, Deletion, Traversal;

Module 5: To write C programs that implements stack (its operations) using Arrays, Pointers and that implements Queue (its operations) using Arrays, Pointers;

Module 6: To write a C program that implements the following sorting methods to sort a given list of integers in ascending order using - Bubble sort, Selection sort; Also, to write C programs that use both recursive and non-recursive functions to perform the following searching operations for a Key value in a given list of integers- Linear search, Binary search;

Module 7: To write a C program that implements the following sorting method to sort a given list of integers in ascending order- Quick sort; Also to write a C program that implements the following sorting method to sort a given list of integers in ascending order- Merge sort;

Text/Reference Books:
1. Dietel & Dietel (2000), *C – How to Program*, Pearson Education
ES 11: Basic Simulation Laboratory

(Simulation Lab. Experiments may be carried out using MATLAB)

Module 1: Creating a One-Dimensional Array (Row / Column Vector) Exercise – Creating a vector of even whole numbers between 31 and 75; Creating a Two-Dimensional Array (Matrix of given size) and (A). Performing Arithmetic Operations - Addition, Subtraction, Multiplication and Exponentiation. (B). Obtaining Modified Matrix - Inverse, Transpose, with Appended and Deleted Elements;

Module 2: Performing Matrix Manipulations - Concatenating, Indexing, Sorting, Shifting, Reshaping, Resizing and Flipping about a Vertical Axis / Horizontal Axis; Creating Arrays X & Y of given size (1 x N) and Performing
(A). Relational Operations - >, <, ==, <=, >=, ~=
(B). Logical Operations - ~, &|, | XOR

Module 3: Generating a set of Commands on a given Vector (Example: X = [1 8 3 9 0 1]) to (A). Add up the values of the elements (Check with sum)
(B). Compute the Running Sum (Check with sum), where Running Sum for element j = the sum of the elements from 1 to j, inclusive.
(C). Compute the Sine of the given X-values (should be a vector).
Also, Generating a Random Sequence using rand() / randn() functions and plotting them.

Module 4: Evaluating a given expression and rounding it to the nearest integer value using Round, Floor, Ceil and Fix functions; Also, generating and Plots of (A) Trigonometric Functions - sin(t), cos(t), tan(t), sec(t), cosec(t) and cot(t) for a given duration ‘t’. (B). Logarithmic and other Functions – log(A), log10(A), Square root of A, Real nth root of A.

Module 5: Creating a vector X with elements, \(X_n = (-1)^{n+1}/(2n-1) \) and Adding up 100 elements of the vector, X; And, plotting the functions, \(x, x^3, e^x \) and \(\exp(x^2) \) over the interval \(0 < x < 4 \) (by choosing appropriate mesh values for x to obtain smooth curves), on (A). A Rectangular Plot
(B). A Semi log Plot (C). A log-log Plot

Module 6: Generating a Sinusoidal Signal of a given frequency (say, 100Hz) and Plotting with Graphical Enhancements - Titling, Labelling, Adding Text, Adding Legends, Adding New Plots to Existing Plot, Printing Text in Greek Letters, Plotting as Multiple and Sub-Plots; Also, Making Non-Choppy and Smooth Plot of the functions,
\[f(x) = \sin(1/x) \text{ for } 0.01 < x < 0.1 \text{ and } g(x) = (\sin x) / x. \]

Module 7: Creating A Structure, An Array of Structures and Writing Commands to Access Elements of the created Structure and Array of Structures; Also, Solving First Order Ordinary Differential Equation using Built-in Functions; And, Creating an M x N Array of Random Numbers using rand and setting any value that is < 0.2 to ‘0’ and any value that is ≥ 0.2 to ‘1’ by moving through the Array, Element by Element;
Module 8: Generating normal and integer random numbers (1-D & 2-D) and plotting them; Also, writing a script (which keeps running until no number is provided to convert) that asks for temperature in degrees Fahrenheit and computes the equivalent temperature in degrees Celsius. [Hint: Function `is empty` is useful]

Module 9: Writing brief scripts starting each script with a request for input (using `input`) to evaluate the function \(h(T) \) using if-else statement, where

\[
\begin{align*}
h(T) &= (T - 10) & \text{for} & & 0 < T < 100 \\
&= (0.45T + 900) & \text{for} & & T > 100.
\end{align*}
\]

Exercise: Testing the scripts written using A). \(T = 5, h = -5 \) and B). \(T = 110, h = 949.5 \)

Also, creating a graphical user interface (GUI); and, curve fitting using (A) straight line fit (B). Least squares fit

Module 10: Interpolation based on following schemes (A). Linear (B). Cubic (C). Spline. Also, generating the first ten Fibonacci numbers according to the relation

\[F_n = F_{n-1} + F_{n-2} \]

with \(F_0 = F_1 = 1 \)

and computing the ratio \(\frac{F_n}{F_{n-1}} \) for the first 50 Fibonacci numbers.

[Exercise: Verifying that the computed ratio approaches the value of the golden mean \((1 + \sqrt{5}) / 2 \)]; Also generating equivalent square wave from a sine wave of given amplitude and frequency; and, obtaining the covariance & correlation coefficient matrices for a given data matrix.

Text Books:

Reference Books:

ES 12: Basic Thermodynamics

Text Books:

Reference Books:

ES 13: Solid Mechanics and Fluid Mechanics

(A) Solid Mechanics:

Module 3: Shear Stresses- Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle sections.

(B) Fluid Mechanics:

Module 4: Fluid Properties and Fluid statics- Density, Specific weight, Specific gravity, viscosity, vapour pressure, compressibility, Pressure at a point, Pascal’s law, and pressure variation with temperature, density and attitude. Hydrostatic law, Piezometer, Simple and differential manometers, pressure gauges, total pressure and centre of pressure-plane, vertical and inclined surfaces. Buoyancy and stability of floating bodies.

Module 5: Fluid kinematics- Stream line, path line and streak lines and stream tube, classification of flows-steady & unsteady, uniform & non uniform, laminar & turbulent, rotational & irrotational flows, one, two and three dimensional flows-Continuity equation in 3D flow, stream function, velocity potential function.

Module 6: Fluid dynamics- Surface and body forces –Euler’s and Bernoulli’s equation derivation, Navier-stokes equation (explanation only) Momentum equation-applications, vortex-Free and Forced. Forced vortex with free surface.

Text Books:
4. Engineering Fluid Mechanics by K. L. Kumar, S.Chand & Co.

Reference Books:

ES 14: Solid Mechanics and Fluid Mechanics Laboratory 0:0:2 [1]

A. Strength of Materials – List of Experiments
1. Tension test
2. Bending tests on simply supported beam and Cantilever beam.
3. Torsion test
5. Hardness tests (Brinnel’s and Rockwell)
6. Tests on closely coiled and open coiled springs
7. Compression test on wood or concrete
8. Impact test
9. Shear test
Text/Reference Books:

B. Fluid Mechanics – List of Experiments

1. Calibration of Venturi meter & Orifice meter
2. Determination: Coefficient of discharge for small orifice/mouthpiece by constant head method.
3. Calibration of contracted Rectangular Notch and / Triangular Notch
5. Determination of Coefficient for minor losses.
6. Verification of Bernoulli’s equation.

Text/Reference Books:

ES 15: Engineering Mechanics

2:2:0 [3]

Module 1: Statics –Basics Concepts, Fundamental principles & concepts: Vector algebra, Newton’s laws, gravitation, force (external and internal, transmissibility), couple, moment (about point and about axis), Varignon’s theorem, resultant of concurrent and non-concurrent coplanar forces, static equilibrium, free body diagram, reactions. Problem formulation concept; 2-D statics, two and three force members, alternate equilibrium equations, constraints and static determinacy; 3-D statics.

Module 2: Analysis of Structures- Trusses: Assumptions, rigid and non-rigid trusses; Simple truss (plane and space), analysis by method of joints. Analysis of simple truss by method of sections; Compound truss (statically determinate, rigid, and completely constrained). Analysis of frames and machines.

Module 3: Friction- Coulomb dry friction laws, simple surface contact problems, friction angles, types of problems, wedges. Sliding friction and rolling resistance.

Module 6: Review of particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton’s
2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique).

Module 8: Plane kinetics of rigid bodies- Kinetics of system of particles and derivation of moment equation. Translation. Fixed axis rotation; General planar motion. Work – kinetic energy, potential energy, power; Impulse-momentum. Impact; Combination problems.

Text/Reference Books:

Module 1: Simple Stresses and Strains- Concept of stress and strain, St. Venant’s principle, stress and strain diagram, Hooke’s law, Young’s modulus, Poisson’s ratio, stress at a point, stresses and strains in bars subjected to axial loading, Modulus of elasticity, stress produced in compound bars subjected to axial loading. Temperature stress and strain calculations due to applications of axial loads and variation of temperature in single and compound walls.

Module 2: Compound Stresses and Strains- Two dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr’s circle of stress, ellipse of stress and their applications. Two dimensional stress-strain system, principal strains and principal axis of strain, circle of strain and ellipse of strain. Relationship between elastic constants.

Module 3: Bending moment and Shear Force Diagrams- Bending moment (BM) and shear force (SF) diagrams. BM and SF diagrams for cantilevers simply supported and fixed beams with or without overhangs. Calculation of maximum BM and SF and the point of contra flexure under concentrated loads, uniformly distributed loads over the whole span or part of span, combination of concentrated loads (two or three) and uniformly distributed loads, uniformly varying loads, application of moments.
Module 4: Theory of bending stresses- Assumptions in the simple bending theory, derivation of formula: its application to beams of rectangular, circular and channel sections, Composite beams, bending and shear stresses in composite beams.

Module 5: Slope and deflection- Relationship between moment, slope and deflection, Moment area method, Macaulay’s method. Use of these methods to calculate slope and deflection for determinantal beams.

Module 6: Torsion- Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, torsional rigidity., Combined torsion and bending of circular shafts, principal stress and maximum shear stresses under combined loading of bending and torsion. Analysis of close-coiled-helical springs.

Module 7: Thin Cylinders and Spheres- Derivation of formulae and calculations of hoop stress, longitudinal stress in a cylinder, and sphere subjected to internal pressures.

Module 8: Columns and Struts- Columns under uni-axial load, Buckling of Columns, Slenderness ratio and conditions. Derivations of Euler’s formula for elastic buckling load, equivalent length. Rankine Gordon’s empirical formula.

Text/Reference Books:

ES 17: Thermodynamics 2:2:0 [3]

Module 3: Second Law of Thermodynamics- Thermal energy reservoirs, heat engines energy conversion, Kelvin’s and Clausius statements of second law, the Carnot cycle, the Carnot Theorem, the thermodynamic temperature scale, the Carnot heat engine, efficiency, the Carnot refrigerato and heat pump, COP. Clausius inequality, concept of entropy, principle of increase of entropy – availability, the increase of entropy principle, perpetual-motion machines, reversible and irreversible processes, Entropy change of pure substances, isentropic processes, property diagrams involving entropy, entropy change of liquids and solids, the entropy change of ideal gases,
reversible steady-flow work, minimizing the compressor work, isentropic efficiencies of steady-flow devices, and entropy balance. Energy - a measure of work potential, including work potential of energy, reversible work and irreversibility, second-law efficiency, exergy change of a system, energy transfer by heat, work, and mass, the decrease of exergy principle and exergy destruction, energy balance: closed systems and control volumes energy balance.

Module 5: Power Cycles- Vapour and combined power cycles, including the Carnot vapor cycle, Rankine cycle: the ideal cycle for vapor power, the ideal reheat and regenerative and the second-law analysis of vapour power cycles. Gas power cycles, including basic considerations in the analysis of power cycles, the Carnot cycle and its value in engineering, , an overview of reciprocating engines, air standard assumptions ,gasoline engine Otto cycle, diesel engine cycle, gas-turbine Brayton cycle, and the second-law analysis of gas power cycles.

Text/ Reference Books:

ES 18: Engineering Materials

Module 1: Basic Crystallography- Crystal structure – BCC, FCC and HCP structure – unit cell – crystallographic planes and directions, miller indices. Crystal imperfections, point, line, planar and volume defects – Grain size, ASTM grain size number. Frank Reed source of dislocation Elastic & plastic modes of deformation, slip & twinning, strain hardening, seasons cracking, Bauschinger’s effect, yield point phenomenon, cold/hot working, recovery, re-crystallization, and grain growth, strengthening of metals.

Text/ Reference Books:

(d) OPEN ELECTIVES

OE 01: Database Management Systems
3:0:2

Module 5: Advanced Topics- Fundamental Concepts of Transaction Management, XConcurrency Control, Recovery Systems, Data Analysis and OLAP. Introduction to Data Mining, Data Farming, Data Warehousing, Spatial and Geographic Databases, Temporal databases a,d Multimedia Databases.

Text Books:
2. An Introduction to Database Design – Date
3. Object-Oriented Database Design – Harrington

Reference Books:
1. Fundamentals of Database Systems – Elmasri and Navathe
2. Database Management and Design – Hansen and Hansen

OE 02: Software Engineering
3:0:0

Text Books:
1. Fundamentals of Software Engineering – Carlo Ghezzi et. al.

Reference Books:
3. Software Engineering with Abstraction – Berzins and Luqi

OE 03: Design and Analysis of Algorithms 3:0:0 [3]

Module 5: Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – PSPACE.

Text Books:
1. Algorithm Design – Jon Kleinberg and Eva Tardos
2. Introduction to Algorithms – T.H. Corman et. al.

Reference Books:

OE 04: Disaster Management 3:0:0 [3]

Module 1: Introduction (3 lectures)- Concepts and definitions: disaster, hazard, vulnerability, risk, capacity, impact, prevention, mitigation).

Module 2: Disasters (12 lectures)- Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills etc); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility.

Module 3: Disaster Impacts (5 lectures)- Disaster impacts (environmental, physical, social, ecological, economical, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate-change and urban disasters.

Module 4: Disaster Risk Reduction (DRR) (15 lectures)- Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post-disaster environmental response (water, sanitation, food safety, waste management, disease control); Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders;
Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority.

Module 5: Disasters, Environment and Development (5 lectures) - Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land-use changes, urbanization etc.), sustainable and environmental-friendly recovery; reconstruction and development methods.

Text/Reference Books:

OE 05: Project Management 3:0:0 [3]

Module 1: Introduction to Project management: Characteristics of projects, Definition and objectives of Project Management, Stages of Project Management, Project Planning Process, Establishing Project organization.

Module 3: Developing Project Plan (Baseline), Project cash flow analysis, Project scheduling with resource constraints: Resource Levelling and Resource Allocation. Time Cost Trade off: Crashing Heuristic.

Module 5: Post-Project Analysis.

Text/Reference Books:
1. Shhtub, Bard and Globerson, Project Management: Engineering, Technology, and Implementation, Prentice Hall, India
4. Wiest and Levy, Management guide to PERT/CPM, Prentice Hall, India
7. P. K. Joy, Total Project Management: The Indian Context, Macmillan India Ltd.

Additional Readings:
OE 06: Engineering Risk – Benefit Analysis 3:0:0 [3]

Module 5: Data Needs for Risk Studies: Elicitation Methods of Expert Opinions, Guidance

Text Books:

Reference Books:

OE 07: Infrastructure Systems Planning 3:0:0 [3]

Module 2: Preparing for Infrastructure Systems Planning & Management- Factors to consider in designing IT organizations and IT infrastructure, Determining customer's Requirements, Identifying System Components to manage, Exist Processes, Data, applications, Tools and their integration, Patterns for IT systems management, Introduction to the design process for information systems, Models, Information Technology Infrastructure Library (ITIL).

Module 5: System thinking method for model-building of infrastructural planning Model observation, Construction of model structure, Simulation analysis, Multi-agent system.

Text/Reference Books:

OE 08: Planning for Sustainable Development

Module 1: Sustainable Development-explains and critically evaluates the concept of sustainable development, Environmental degradation and poverty Sustainable development: its main principles, the evolution of ideas about sustainability, strategies for promoting sustainable development, resistances to the concept, and some alternative approaches. Examine some important current issues and areas of debate in relation to sustainable development.

Module 2: Innovation for sustainable development- Environmental management and innovation strategies.

Module 3: Societal transformations. Institutional theory.

Module 4: Governance for sustainable development. Policy responses to environmental degradation.

Module 5: Capacity development for innovation. Research methods.
Text/Reference Books:

Additional References:
http://www.sustainability.com/developing-value/definitions.asp

OE 09: Managing Innovation and Entrepreneurship

Module 1: Introduction to Entrepreneurship: Evolution of entrepreneurship from economic theory Managerial and entrepreneurial competencies. Entrepreneurial growth and development.

Module 3: Entrepreneurial Motivation: Need for continuous learning & relearning Acquiring Technological Innovation Entrepreneurial motivation (nAch story) Achievement Motivation in Real life.. Case Study.

Text/Reference Books:
OE 10: Global Strategy and Technology

Module 1: Introduction to Global Strategy- What the motivations to expand abroad are and how firms can manage conflicting demands in terms of global integration, local responsiveness and worldwide learning. How Global are We? How global most MNCs are? The End of Corporate Capitalism Beyond Off shoring Distance Still Matters Going International.

Module 2: Location and Global Strategy: Home-Country Effects: Shifting global leadership in the watch industry Success of Swatch as a company in this industry Potential threat on the horizon that could once again cause the decline of the Swiss watch industry. Distance and Global Strategy: Host Country Choices: The Globalization of CEMEX The benefits that CEMEX has derived from expanding across borders Challenges that CEMEX is likely to confront in the future How far can Cemex’s competitive advantage travel. Industry Characteristics and Global Strategy: Host - country choices: Characteristics of the global large appliances industry Design of an effective competitive strategy Haier’s current global strategy Good rationale for Haier to make global expansion its top strategic priority.

Module 3: International Corporate Governance: International Corporate Governance with Chinese Characteristics Corporate governance matters in China’s capital market Corporate governance model in China differ from international standards Special problems associated with Petro China’s corporate governance model Conditions required for further reforms in Petro China’s corporate governance system. Cross-cultural Negotiation: Learn from the MOUSE negotiation Issues/factors affect positively or negatively & the negotiation outcome Issues crucial in aligning different parties interests. Negotiators attitudes and culture in reaching the agreement The role of information acquisition in reaching an agreement in this negotiation. Foreign Market Entry Strategies: Issues around geographic market diversification and different strategies of internationalization Different entry modes into a foreign market Stages of internationalization International operations Tensions of a family-owned enterprise going international.

Module 5: Investing in R&D Capabilities: Incentives to Innovate Investing in basic/applied research; Real options and other approaches. Applying the Concepts and Frameworks: R&D Investment Decisions: Applying the NPV, Real Options and Scenario-Planning Frameworks.

Text/Reference Books:
OE 11: Knowledge Management

Module 1: Introduction: Definition, evolution, need, drivers, scope, approaches in Organizations, strategies in organizations, components and functions, understanding knowledge; Learning organization: five components of learning organization, knowledge sources, and documentation.

Module 2: Essentials of Knowledge Management; knowledge creation process, knowledge management techniques, systems and tools.

Module 3: Organizational knowledge management; architecture and implementation strategies, building the knowledge corporation and implementing knowledge management in organization.

Module 4: Knowledge management system life cycle, managing knowledge workers, knowledge audit, and knowledge management practices in organizations, few case studies.

Module 5: Futuristic KM: Knowledge Engineering, Theory of Computation, Data Structure.

Text Books:
2. Knowledge Management- Elias M. Awad Hasan M. Ghazri, Pearson Education

Reference Books:
2. The Fifth Discipline Field Book – Strategies & Tools For Building A learning Organization – Peter Senge et al. Nicholas Brealey 1994
3. Knowledge Management – Sudhir Warier, Vikas publications

Module 2: Data, Information and Knowledge; concept of information, need of information (professional, educational, research), qualities of information, value of information, difference between data and information, properties of the needed information. Information and Management; planning, organizing, co-ordinating and controlling,

Module 3: Concepts of marketing; difference between marketing selling and retailing; marketing mix, market-segmentation, marketing planning. Strategy and Approaches; modern concept of marketing.

Module 4: Community development; concept, definition, meaning, need, history, principles, objectives and scope. Community Building: Coming of Age, Regenerating Community, Community Model.

Module 5: Consensus Organizing Model, What's Behind Building Healthy Communities? Participatory Democracy, The Role of various NGOs in Community Development. The Role of Business and Government in Community Development Initiatives How to Form a Non-profit Corporation Fund Raising and Grant Writing.

Text/Reference Books:
Module 1: Scope of AI - Games, theorem proving, natural language processing, vision and speech processing, robotics, expert systems, AI techniques - search knowledge, abstraction.

Module 2: Problem solving - State space search; Production systems, search space control: depth-first, breadth-first search, heuristic search - Hill climbing, best-first search, branch and bound. Problem Reduction, Constraint Satisfaction End, Means-End Analysis

Text Books:
3. Robin R Murphy, Introduction to AI Robotics PHI Publication, 2000

Reference Books:

OE 14: Cloud Computing

Module 1: Introduction- Shift from distributed computing to cloud computing; principles and characteristics of cloud computing- IaaS, PaaS, SaaS; service oriented computing and cloud environment

Module 2: Cloud Computing Technology-Client systems, Networks, server systems and security from services perspectives; Accessing the cloud with platforms and applications; cloud storage

Module 4: Using Cloud Services-Cloud collaborative applications and services – case studies with calendars, schedulers and event management; cloud applications in project management.

Module 5: Case studies- Microsoft Azure, Google App Engine and Open source clouds- OpenNebula and Eucalyptus

Text Books:

Reference Books:
1. Resources from Internet /WWW.

OE 15: Digital Communication 3:0:0 [3]

Module 2: Baseband Pulse Transmission-Matched Filter- Error Rate due to noise –Inter-symbol Interference- Nyquist’s criterion for Distortion-less Base band Binary Transmission- Correlative level coding –Baseband and M-ary PAM transmission –Adaptive Equalization –Eye patterns

Module 4: Error Control Coding- Discrete memory-less channels – Linear block codes - Cyclic codes - Convolutional codes – Maximum likelihood decoding of convolutional codes-Viterbi Algorithm, Trellis coded Modulation, Turbo codes.

Text Books:

Reference Books:

OE 16: Digital Signal Processing 3:0:0 [3]

Module 2: Time Domain Representation of Signals & Systems- Discrete Time Signals, Operations on Sequences, the sampling process, Discrete-Time systems, Time-Domain characterization of LTI Discrete-Time systems, state-space representation of LTI Discrete-Time systems, random signals.

Module 3: Transform-Domain Representation of Signals-The Discrete-Time Fourier Transform, Discrete Fourier Transform, DFT properties, computation of the DFT of real sequences, Linear Convolution using the DFT. Z-transforms, Inverse ztransform, properties of z-transform, transform domain representations of random signals. Transform-Domain Representation of LTI Systems: the frequency response, the transfer function, types of transfer function, minimum-phase and maximum-Phase transfer functions, complementary transfer functions, Discrete-Time processing of random signals.

Text Books:

Reference Books:
1. Allan Y. Oppenheim & Ronald W. Schater , "Applications DSP",.
2. C.Sydney Burrus (Eds), DSP and Digital Filter Design

OE 17: Engineering System Analysis and Design 3:0:0 [3]

Module 1: INTRODUCTION- Systems, Elements of a system, Types of systems, Subsystems, Super systems, Need for system analysis and design, CASE tools for analysis and its limitations.

Module 2: System Analysis-Methods of system analysis, system development life cycle, structured approach, development tools, data base and networking techniques.
Module 3: System design- Design technologies, Design principles, Design tools and methodologies, feasibility survey, conversion and testing tools, design management and maintenance tools.

Module 4: Object oriented analysis and design- Introduction, Object modeling, Dynamic modeling, functional modelling, UML diagrams and tools.

Module 5: Case studies- Developing prototypes for systems like, online exam management, Computer gaming and online website management.

Text Books:

Reference Books:

OE 18: Engineering System Design Optimization 3:0:0 [3]

Module 1: Introduction- Optimization problem formulation, optimization algorithms, applications and examples, different optimization methods available.

Module 2: Single Variable optimization-Optimization criteria, bracketing methods – Exhaustive search method, bound phase method; Region Elimination methods – Fibonacci search method, Golden search method; Gradient based methods – Newton Raphson method, Bisection method; Root finding using optimization technique.

Module 3: Multi objective optimization- Optimization criteria, Different search methods, Unidirectional search, Direct search method – Evolutionary optimization method, Powell’s conjugate direction method; Gradient based methods – Newton’s method and Variable metric method.

Module 4: Specialized Methods- Integer programming, Geometric programming, simulated annealing, Global optimization using - steep descent method, simulated annealing.

Module 5: Genetic algorithms and evolutionary approaches-Differences and similarities between genetic algorithms and traditional techniques, operators of GA’s, Computer program for simulated annealing, Newton Raphson method, Evolutionary optimization method.

Text Books:

Reference Books:
1. Taha, Operations Research, TMH 2010
OE 19: Engineering System Modeling and Simulation 3:0:0 [3]

Module 1: Introduction-Systems, System types, System Modeling, Types of system modelling, Classification and comparison of simulation models, attributes of modelling, Comparison of physical and computer experiments, Application areas and Examples

Module 2: Mathematical and Statistical Models- Probability concepts, Queuing Models, Methods for generating random variables and Validation of random numbers.

Module 3: Language-System modelling, programming languages, comparison of languages, Identifying and selection of programming language, feasibility study of programming language for the given application.

Module 4: Experiments-Simulation of different systems, Analysis, validation and verification of input and output simulated data, study of alternate techniques.

Module 5: Case study-Developing simulation model for information centers, inventory systems and analysis of maintenance systems.

Text Books:

Reference Books:

OE 20: Game theory with Engineering Applications 3:0:0 [3]

Module 2: Mixed Strategy Nash Equilibrium- Randomization of Actions, Mixed strategy Nash equilibrium, Dominated actions, Pure strategy equilibria in the presence of randomization, Illustrations: (1) expert diagnosis (2) reporting a crime. Finding all mixed strategy Nash equilibria of some representative games.

Module 5: Coalitional Games- Coalitional games. The Core. Illustrations: (1) Ownership and distribution of wealth (2) exchanging homogeneous items (3) exchanging heterogeneous items (4) voting (5) matching. Shapley value and examples.

Text Books:

Reference Books:

OE 21: Supply Chain Management-Planning

Module 1: Introduction to Supply Chain- Supply chain systems, stages and decision phases and process view of supply chain; supply chain flows; examples of supply chains; competitive supply chain strategies; drivers for supply chain performance.

Module 2: Designing the Supply Chain Network- Distribution Networking – role, design; Supply Chain Network – SCN- Role, factors; framework for design decisions.

Module 3: Facility Location and Network Design- Models for facility location and capacity location; Impact of uncertainty on SCN – discounted cash flow analysis; evaluating network design decisions using decision trees; analytical problems.

Module 4: Planning and Managing Inventories in a Supply Chain- Inventory concepts, trade promotions; managing multi-echelon cycle inventory, safety inventory determination; impact of supply uncertainty aggregation and replenishment.

Module 5: Sourcing, Transportation and Pricing Products-Role of sourcing, supplier- scoring and assessment, selection and contracts, design collaboration; role of transportation, models of transportation and designing transportation network; revenue management.

Text Books:
1. Sunil Chopra and Peter M, Supply Chain Management, Pearson publishing, 2001

Reference Books:
2. Kim, B., Supply chain management in the mastering business in As

(e) MANDATORY COURSES

MC 01: Technical English

Module 1: Language Focus- Technical vocabulary, Synonyms and Antonyms, Numerical adjectives, Conjunction and Preposition clauses, Noun and adjective clauses, Abbreviations, Acronyms and homonyms, Phrasal verbs and idioms.

Module 2:Language Focus- Relative clauses, Imperative and infinitive structures, Question pattern, Auxiliary verbs (Yes or No questions), Contrasted time structures, Adverbial clauses of time, place and manner, Intensifiers, Basic pattern of sentences.

Module 3:Reading- Intensive reading, Predicting content, Interpretation, Inference from text, Inferential information, Implication, Critical Interpretation, Reading brief notices, advertisements, editorial of news papers.

Module 4: Listening- Listening to lectures, seminars, workshops, News in BBC, CNN TV channels, Writing a brief summary or answering questions on the material listened.

Module 5: Speaking- Pronunciation, stress and intonation, Oral presentation on a topic, Group discussion, Accepting others’ views / ideas, Arguing against others’ views or ideas, Interrupting others’ talk, Addressing higher officials, colleagues, subordinates, a public gathering, a video conferencing.

Text Books:
1. -----, English for Engineers and Technologists, Volumes 1 and 2, Department of Humanities and Social Sciences, Anna University, Chennai, Orient Longmans Publication, 2008

Reference Books:

MC 02: Value Education, Human Rights and Legislative Procedures

Module 1: Values and Self Development-Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non moral valuation, Standards and principles, Value judgments. Importance of cultivation of values, Sense of duty, Devotion, Self reliance,
Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity, Power of faith, National unity, Patriotism, Love for nature, Discipline.

Module 2: Personality and Behavior Development- Soul and scientific attitude, God and scientific attitude, Positive thinking, Integrity and discipline, Punctuality, Love and kindness, Avoiding fault finding, Free from anger, Dignity of labor, Universal brotherhood and religious tolerance, True friendship, Happiness vs. suffering love for truth, Aware of self destructive habits, Association and cooperation, Doing best, Saving nature.

Module 3: Character and Competence- Science vs. God, Holy books vs. blind faith, Self management and good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of women, All religions and same message, Mind your mind, Self control, Honesty, Studying effectively.

Module 5: Legislative Procedures- Indian constitution, Philosophy, fundamental rights and duties, Legislature, Executive and Judiciary, Constitution and function of parliament, Composition of council of states and house of people, Speaker, Passing of bills, Vigilance, Lokpal and functionaries.

Text Books:

Reference Books:

MC 03: Environmental Studies

Module 1: Introduction and Natural Resources: Multidisciplinary nature and public awareness, Renewable and nonrenewal resources and associated problems, Forest resources, Water resources, Mineral resources, Food resources, Energy resources, Land resources, Conservation of natural resources and human role.

Module 2: Ecosystems: Concept, Structure and function, Producers composers and decomposers, Energy flow, Ecological succession, Food chains webs and ecological pyramids, Characteristics structures and functions of ecosystems such as Forest, Grassland, Desert, Aquatic ecosystems.

Module 3: Biodiversity and Conservation: Definition, Genetic, Species, and Ecosystem diversity, Bio-geographical classification of India, Value of biodiversity at global, national, local levels,
India as a mega diversity nation, Hot sports of biodiversity, Threats to biodiversity, Endangered and endemic species of India, In-situ and ex-situ conservation of biodiversity.

Module 4: Environmental Pollution- Definition, Causes, effects and control of air pollution, water pollution, soil pollution, marine pollution, noise pollution, thermal pollution, nuclear hazards, human role in prevention of pollution, Solid waste management, Disaster management, floods, earthquake, cyclone and landslides.

Text Books:

Reference Books:

MC 04: Energy Studies

Module 1: Energy Sources - Fossil fuels, Nuclear fuels, hydel, solar, wind and bio fuels in India, Energy conservation, Nuclear energy through fission and fusion processes.

Module 3: Global Energy Scenario- Role of energy in economic development and social transformation, Overall energy demand, availability and consumption, Depletion of energy resources and its impact on economy, Non proliferation of nuclear energy. International energy policies of G-8, G-20, OPEC and European union countries.

Module 4: Indian Energy Scenario- Commercial and noncommercial forms of energy, Utilization pattern in the past, present and also future prediction, Sector wise energy consumption.

Text Books:
Reference Books:
2. ---- *TEDDY Year Book*, The Energy Research Institute (TERI), 2011.

MC 05: Technical Communication and Soft Skills 3:0:0 [3]

Module 1: Information Design and Development- Different kinds of technical documents, Information development life cycle, Organization structures, factors affecting information and document design, Strategies for organization, Information design and writing for print and for online media.

Module 2: Technical Writing, Grammar and Editing- Technical writing process, forms of discourse, Writing drafts and revising, Collaborative writing, creating indexes, technical writing style and language. Basics of grammar, study of advanced grammar, editing strategies to achieve appropriate technical style. Introduction to advanced technical communication, Usability, Human factors, Managing technical communication projects, time estimation, Single sourcing, Localization.

Module 3: Self Development and Assessment- Self assessment, Awareness, Perception and Attitudes, Values and belief, Personal goal setting, career planning, Self esteem.

Module 4: Communication and Technical Writing- Public speaking, Group discussion, Oral presentation, Interviews, Graphic presentation, Presentation aids, Personality Development. Writing reports, project proposals, brochures, newsletters, technical articles, manuals, official notes, business letters, memos, progress reports, minutes of meetings, event report.

Module 5: Ethics- Business ethics, Etiquettes in social and office settings, Email etiquettes, Telephone Etiquettes, Engineering ethics, Managing time, Role and responsibility of engineer, Work culture in jobs, Personal memory, Rapid reading, Taking notes, Complex problem solving, Creativity.

Text Books:

Reference Books:

MC 06: Foreign Language: French 3:0:0 [3]
Module 1: Pronunciation guidelines; Single vowels, Accentuated vowels, Vowels and consonants combinations, Consonants; Numbers 1-10 Articles and Genders; Gender in French, Plural articles, Some usual expressions

Module 2: Pronouns and Verbs; The verb groups, The pronouns, Present tense, Some color Adjectives and Plural ; Adjectives, Some adjectives, Our first sentences, More Numbers

Module 3: Sentences Structures; Some Prepositions, Normal Sentences, Negative Sentences, Interrogative Sentences, Exercises The Family; Vocabulary, Conversation, Notes on Pronunciation, Notes on Vocabulary, Grammar, Liaisons Guideline

Module 4: D'où viens-tu (Where do you come from); Vocabulary, Conversation, Notes on Vocabulary, Liaisons Guidelines, Comparer (Comparing); Vocabulary, Conversation, Notes on Vocabulary, Grammar Liaisons Guidelines, Ordinal Numbers

Module 5: Le temps (Time); Vocabulary, Grammar, Time on the clock Additional French Vocabulary; Vocabulary related to - The Family, Vocabulary related to - Where do you come from?

Module 6: French Expressions and Idioms; Day-to-day Life, At Work, The car, Sports, Special Events Other French Flavours; Nos cousins d'Amérique - Québec et Accadie, Au pays de la bière et des frites, Mettez-vous à l'heure Suisse, Vé, peuchère, le français bien de chez nous

CHAPTER V
MODEL SCHEME OF INSTRUCTION & SYLLABI-
Branch: Electrical Engineering (EE)

(a) Model Scheme of Instruction for UG Engineering Degree in EE

NOTE: Additional Core Courses listed in Chapter II may be considered here in place of those given below:

EE-Semester 1

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HS 01</td>
<td>Sociology & Elements of Indian History for Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>HS 02</td>
<td>Economics for Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BS 01</td>
<td>Elementary Mathematics for Engineers</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>BS 09</td>
<td>Applied Physics I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>BS 11</td>
<td>Applied Physics Laboratory I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BS 14</td>
<td>Chemistry I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>ES 01</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ES 02</td>
<td>Engineering Workshop</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ES 04</td>
<td>Basic Engineering Mechanics</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>MC 02</td>
<td>Value Education, Human Rights and Legislative Procedures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

EE-Semester II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HS 03</td>
<td>Law for Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>HS 04</td>
<td>Business Communication & Presentation Skills</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>BS 03</td>
<td>Differential Equations</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BS 10</td>
<td>Applied Physics II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>BS 15</td>
<td>Chemistry Laboratory I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>ES 05</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ES 06</td>
<td>Basic Electrical Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>ES 09</td>
<td>Computer Programming</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ES 10</td>
<td>Computer Programming Laboratory</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>15</td>
<td>2</td>
<td>12</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>MC 03</td>
<td>Environmental Studies</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
EE-Semester III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 02</td>
<td>Multivariate Analysis, Linear Algebra and Special Functions</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BS 12</td>
<td>Applied Physics III</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ES 03</td>
<td>Materials Science</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>ES 07</td>
<td>Basic Electronics Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ES 08</td>
<td>Basic Electronics Engineering Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>EE 01</td>
<td>Field Theory and Circuits</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EE 03</td>
<td>Electrical Machines I</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>EE 04</td>
<td>Measurements & Instruments</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>EE 05</td>
<td>Measurements & Instruments Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>EE 07</td>
<td>Electrical Machines Laboratory I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td>6</td>
<td>68</td>
<td>29</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>MC 04</td>
<td>Energy Studies</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

EE-Semester IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 04</td>
<td>Complex Algebra</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>BS 16</td>
<td>Chemistry II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ES 11</td>
<td>Basic Simulation Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>EE 08</td>
<td>Network Analysis & Synthesis</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE 09</td>
<td>Power Electronics</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EE 10</td>
<td>Electrical Machines II</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EE 11</td>
<td>Power Systems I</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>EE 12</td>
<td>Power Electronics Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>EE 13</td>
<td>Electrical Machines Laboratory II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>EE 14</td>
<td>Power Systems Laboratory I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>EE 15</td>
<td>Network Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>13</td>
<td>8</td>
<td>10</td>
<td>31</td>
<td>22</td>
</tr>
</tbody>
</table>
EE=Semester V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 05</td>
<td>Optimization & Calculus of Variations</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>BS 06</td>
<td>Probability & Statistics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ES 12</td>
<td>Basic Thermodynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE 16</td>
<td>Control Systems</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE 17</td>
<td>Power Systems II</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EE 18</td>
<td>Microprocessors & Microcontrollers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EE 20</td>
<td>Control Systems Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>EE 21</td>
<td>Power Systems Laboratory II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>EE 22</td>
<td>Microprocessors & Microcontrollers Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>EE*</td>
<td>Elective Course to be chosen</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL
16 | 6 | 6 | 28 | 22

EE-Semester VI

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 07</td>
<td>Discrete Mathematics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>BS 08</td>
<td>Fuzzy Mathematics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>EE 23</td>
<td>Electric Drives</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>EE 24</td>
<td>Computer Aided Analysis & Design</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>EE 25</td>
<td>Electric Drives Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>EE 26</td>
<td>Advanced Simulation Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>EE 27</td>
<td>Computer Organization & Architecture</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>EE 28</td>
<td>Communication Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>EE*</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>EE*</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL
19 | 2 | 4 | 25 | 22

84
EE-Semester VII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE*</td>
<td>Elective Course to be chosen</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EE*</td>
<td>Elective Course to be chosen</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE*</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE*</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>OE</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>OE</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EE P1</td>
<td>Project Work I</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2</td>
<td>10</td>
<td>28</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EE-Semester VIII

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Contact hrs/wk</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OE</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>OE</td>
<td>Elective Course to be chosen</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE P2</td>
<td>Project Work II & Dissertation</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>32</td>
<td>38</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EE: Scheme of Instruction-Summary

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Work - Subject Area</th>
<th>Credits/Semester I</th>
<th>Credits/Semester II</th>
<th>Credits/Semester III</th>
<th>Credits/Semester IV</th>
<th>Credits/Semester V</th>
<th>Credits/Semester VI</th>
<th>Credits/Semester VII</th>
<th>Credits/Semester VIII</th>
<th>Credits-Total</th>
</tr>
</thead>
</table>
| 1 | Humanities and Social Sciences
(HS) | 6 | 8 | - | - | - | - | - | - | 14 |
| 2 | Basic Sciences
(BS) | 7 | 6 | 5 | 5 | 4 | 4 | - | - | 31 |
| 3 | Engineering Sciences
(ES) | 9 | 8 | 6 | 1 | 3 | - | - | - | 27 |
| 4 | Professional Subjects-Core
(EE) | - | - | 11 | 16 | 12 | 12 | - | - | 51 |
| 5 | Professional Subjects-Electives
(EE) | - | - | - | - | 3 | 6 | 12 | - | 21 |
| 6 | Open Subjects- Electives
(OE) | - | - | - | - | - | 6 | 6 | - | 12 |
| 7 | Project Work, Seminar and/or
Internship
(EEP) | - | - | - | - | - | - | 4 | 16 | 20 |

TOTAL

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Work - Subject Area</th>
<th>Credits/Semester I</th>
<th>Credits/Semester II</th>
<th>Credits/Semester III</th>
<th>Credits/Semester IV</th>
<th>Credits/Semester V</th>
<th>Credits/Semester VI</th>
<th>Credits/Semester VII</th>
<th>Credits/Semester VIII</th>
<th>Credits-Total</th>
</tr>
</thead>
</table>
| 8 | Mandatory Courses
(MC) (Non-Credit) | 3 | 3 | 3 | - | - | - | - | - | 9 |
(b) Model Syllabi for UG Engineering Degree in EE

EE 01: Field Theory and Circuits 2:2:0 [3]

Field Theory:

Module 2: Electric and Magnetic fields- Electric fields due to distributed charges configurations line(s) of charges, uniform plane surface and spherical volume charge distributions; behavior of conductors and dielectrics in electrostatic fields, boundary conditions, applications of ampere’s law and Biot- Savart’s law; capacitance and inductance calculations for simple configurations; time varying fields – displacement current, Maxwell’s equations; Laplace’s and Poisson’s equations.

Circuit Theory:

Module 4: Network theorems and their applications-Superposition, reciprocity, Thevenin, Norton, Maximum power transfer, Millman, Substitution, Compensation and Tellegen’s theorem. Analysis of circuits subject to periodic and non-periodic excitations using Fourier series and Laplace transforms.

Text/Reference Books:

Field Theory:
1. N.N. Rao, ‘Basic Electromagnetics with applications’, PHI

Circuit Theory
2. Van Valkenberg , “Network Analysis”, PHI.
3. Valkenberg & Kinariwala , “Linear Circuits”, PHI.
5. Roy Choudhary , “Networks & systems”, Wiley.
EE 02: Electronic Devices and Systems 2:2:0

Analog:

Module 2: OP-AMP, Differential amplifier and its DC, AC analysis, OP-AMP characteristics, Non-Inverting/Inverting Voltage and Current feedback. Regulated power supplies; Oscillators and Timer (555)

Digital:

Module 3: Logic gates and Logic Families: Logic gates, Universal gates, transistor as a switching element, Combinational Logic gates Introduction to combinational circuits, arithmetic and logical operation, design of Half adder & full adder, subtractor circuits, parity generator & and checker, code converter, decoders, multiplexers, demultiplexers, comparators.

Module 4: Sequential Circuits- Flip-flops, bistable circuits: RS, JK, D, T, Master/Slave Flip-flop, race around condition, latches, synchronous and asynchronous counters up & down counters, shift registers, state transition diagram

Module 5: A/D & D/A Converters- D/A converter, accuracy, resolution and precision, variable resistor network, binary ladder, A/D converter, accuracy and resolution, simultaneous conversion, counter method, continuous A/D converter, dual slope, successive approximation method.

Text/Reference Books:
Analog:

Digital:
1. RP Jain, ‘Modern Electronics’.
2. AP Malvino and DP Leach, ‘Digital Principles and Applications’.

EE 03: Electrical Machines I 2:2:0 [3]

Module 1: Electromechanical Energy Conversion- Basic principle Energy, Force and Torque in singly and multiply excited systems.
Module 2: Transformers- (a) Principle, construction and operation of single phase transformers, phasor diagram, equivalent circuit, voltage regulation, losses and efficiency. (b) Testing- Open & short circuit tests, Polarity test, Summner’s test, Separation of hysteresis and eddy current losses. (c) Three phase Transformer: Construction, various types of connection and their comparative features. (d) Parallel operation of single phase and three phase transformers. (e) Autotransformers- Construction, Principle, Applications and Comparison with two winding transformer. (f) Excitation phenomenon in transformers, Harmonics in single phase and three phase transformers, Suppression of harmonics. (g) Phase conversion- Scott connections, Three phase to six phase conversion. (h) Tap changing Transformers- No load and on load tap changing of transformers. (i) Three winding Transformers. (j) Cooling methods of transformers.

Module 3: D.C. Machines- (a) Working principle, construction and methods of excitation. (b) Armature Winding- Detailed study of simple lap and wave windings. (c) D.C. Generators- emf equation. Circuit models, Armature reaction, Effect of brush shift. Compensating winding, Characteristics of various types of generators, applications. (d) D.C. Motors- Torque equation, Circuit models Characteristics of d.c. shunt, series and compound motors, applications. (e) Starting & Speed Control- Starting methods and speed control of d.c. shunt and series motors. (f) Commutation- Causes of bad commutation, Methods of improvement. (g) Testing- Direct and regenerative methods to test d.c. machines.

Text/Reference Books:
2. Irving L. and Kosow, ‘Electric Machinery and Transformers, Prentice-Hall of India
3. George Mepherson, ”An Introduction to Electrical Machines and Transformers”, John Wiley & Sons, NY

EE 04: Measurements and Instruments 2:2:0 [3]

Module 1: Philosophy Of Measurement- Methods of Measurement, Measurement System, Classification of instrument system, Characteristics of instruments & measurement system, Errors in measurement & its analysis, Standards.

Module 3: Measurement of Parameters- Different methods of measuring low, medium and high resistances, measurement of inductance & capacitance with the help of AC Bridges, Q Meter.

Module 4: AC Potentiometer- Polar type & Co-ordinate type AC potentiometers, application of AC Potentiometers in electrical measurement

Module 5: Magnetic Measurement- Ballistic Galvanometer, flux meter, determination of hysteresis loop, measurement of iron losses

Module 7: Cathode Ray Oscilloscope - Basic CRO circuit (Block Diagram), Cathode ray tube (CRT) & its components, application of CRO in measurement, Lissajous Pattern.; Dual Trace & Dual Beam Oscilloscopes.

Text/Reference Books:

EE 05: Measurements and Instruments Laboratory

List of Experiments:
1. Calibration of ac voltmeter and ac ammeter;
2. Measurement of form factor of a rectified sine wave & determine source of error if r.m.s. value is measured by a multi-meter;
3. Measurement of phase difference and frequency of a sinusoidal ac voltage using C.R.O.;
4. Measurement of power and power factor of a single phase inductive load and to study effect of capacitance connected across the load on the power factor;
5. Measurement of low resistance by Kelvin’s double bridge;
6. Measurement of voltage, current and resistance using dc potentiometer;
7. Measurement of inductance by Maxwell’s bridge, Hay’s bridge, Anderson’s bridge;
8. Measurement of capacitance by Owen’s bridge, De Sauty bridge, Schering bridge;
9. Measurement of temperature by RTD, thermocouple and thermistor;
10. Study of Frequency and differential time counter;
11. Measurement of displacement using LVDT, strain gauge based displacement transducer and strain gauge based load cell;
12. Measurement of flow rate by anemometer;

EE 06: Electronic Devices and Systems Laboratory

List of Experiments:
1. Study the diode clipping circuits.
2. Study the diode clamping circuits.
3. Study Zener diode as voltage regulator.
4. Study the common emitter configuration of a transistor.
5. Study the common base configuration of a transistor.
6. Study the common collector configuration of a transistor.
7. Study FET as (a) A source follower (b) A voltage variable resistor.
8. Study FET as (a) A chopper (b) A constant current source.
9. Study the following mathematical operations using Op-Amps: (a) Addition (b) Subtraction (c) Multiplication (d) Division (e) Integration (f) Differentiation
10. Study the Op-Amp as wave form Generator: (a) Astable Multivibrator (b) Triangle Wave Generator (c) Schmitt Trigger

EE 07: Electrical Machines Laboratory I

List of Experiments:
1. To separate hysteresis and eddy current losses of a single phase transformer at rated voltage, frequency by conducting no load tests at different frequencies keeping V/f constant.
2. To operate two single phase transformers of different KVA ratings in parallel and plot the variation of currents shared by each transformer versus load current.
3. To conduct Sumpners test on two identical single phase transformers and determine their efficiency at various loads.
4. To perform direct load test on a D.C. shunt motor and plot variation of (a) Input current (b) Speed (c) Torque (d) Efficiency versus output power.
5. To obtain magnetization characteristics of a D.C. machine. Estimate field circuit resistance of a D.C. shunt generator at rated speed. Measure field winding and armature winding resistance. Plot the external characteristics of D.C. shunt generator.
6. To make Scott connection of two single phase transformers and to verify the current relation by drawing phasor diagrams for (a) Balanced and (b) Unbalanced resistive loads.
7. To conduct open circuit and short circuit test on a three phase three winding transformer and determine the equivalent circuit parameters.
8. To conduct Sumpners test on two identical single phase transformers and determine their efficiency at various loads.
9. To conduct direct load test on a D.C. compound generator with
 a) Shunt field alone
 b) Cumulative and differential compounding for short and long shunt connections.
10. To conduct load test on a cross field machine for different degrees of compensation and plot the variation of terminal voltage versus load current

EE 08: Network Analysis and Synthesis

Module 1: Concept of generalized frequency, circuit representation and their response in terms of generalized frequency.

Module 2: Fourier transforms and series, Laplace transform, its properties, and Z-transforms, its properties and applications, Concept of one port, two-port networks, characteristics and parameters.

Module 3: Generalized network functions (Driving point and Transfer), concepts of poles and zeros, determination of free and forced response from poles and zeros, concept of minimum phase networks, analysis of ladder, lattice, T and bridged-T networks.
Module 4: Introduction to state-space representation of networks and their analysis. Concept of filtering, filter types and characteristics, classical design of T and PI passive filters, frequency transformations. Introduction to active filters, active filter specifications, design of first and second order RC –active filters, maximally flat and equi-ripple filter characteristics, implementation using passive elements and op-amps.

Module 5: Network synthesis- Synthesis problem formulation, properties of positive real functions, Hurwitz polynomials, properties of RC, LC and RL driving point functions, Foster and Cauer synthesis of LC and RC circuits.

Text/Reference Books:
2. V. Valkenberg – Modern Network Synthesis, PHI.
5. V. Atre-- Network Theory and Filter design, TMH.

EE 09: Power Electronics

Module 1: Characteristics and switching behavior of different solid-state devices namely Power Diode, SCR, UJT, TRIAC, DIAC, GTO, MOSFET, IGBT, MCT and power transistor. Two-transistor analogy of SCR, Firing circuits of SCR and TRIAC, SCR gate characteristics.

Module 2: SCR ratings. Protection of SCR against over current, over voltage, high dV/dt, high dI/dt. Thermal protection Methods of commutation. Series and Parallel operation of SCR.

Module 3: Classification of Rectifiers, Phase controlled rectifiers: Single phase half wave controlled. Fully controlled and half controlled rectifiers and their performance parameters.

Module 4: Three phase half wave, full wave and half controlled rectifiers and their performance parameters. Effect of source impedance on the performance of single phase and three phase controlled rectifiers. Single-phase and three phase Dual Converter.

Text/Reference Books:

EE 10: Electrical Machines II

Module 1: Basic concepts of Electrical Machines-Winding factors, generated e. m. f., m. m. f. of distributed a.c. winding, rotating magnetic field.
Module 2: Induction Machines (a) Constructional features, production of torque, phasor diagram, equivalent circuit, performance analysis, torque-slip characteristics. (b) Testing - Running light and blocked rotor test, load test. (c) Effect of rotor resistance, deep bar and double cage induction motor. (d) Generator Operation (e) Starting - Starting methods of squirrel cage and wound rotor induction motor. (f) Speed Control - Various methods of speed control of squirrel cage and wound rotor induction motor. (g) Effects of space harmonics.

Module 4: Synchronous Machines (a) Constructional features. (b) Cylindrical rotor machine- I) Synchronous Generator- Generated e.m.f., circuit model and phasor diagram, armature reaction, synchronous impedance, voltage regulation and different methods for its estimation. II) Synchronous Motor- Operating principle, circuit model, phasor diagram, effect of load. III) Operating characteristics of synchronous machines, V-curves, starting methods of synchronous motors. (c) Salient pole Machine- Two reaction theory, analysis of phasor diagram, power angle characteristics, determination of x_d and x_q. (d) Parallel operation of Alternators-Synchronization and load division.

Text/Reference Books:
3. MG Say, “Theory Performance and Design of AC Machines” CBS Publisher
4. Nagrath & Kothari,” Electric Machines” TMH

EE 11: Power Systems I 2:2:0

Module 1: Generation of Electric Power- Brief description of Thermal, hydro nuclear and gas power plants & other non-conventional power plants.

Module 2: Transmission and Distribution Systems- DC 2 –wire and 3 – wire systems, AC single phase, three phase and 4-wire systems, comparison of copper efficiency. Distribution Systems: primary and secondary distribution systems, concentrated & uniformly distributed loads on distributors fed at one and both ends, ring distribution, submains and tapered mains, voltage drop and power loss calculations, voltage regulators.

Module 3: Overhead Transmission Lines- Types of Conductors, Line parameters; calculation of inductance and capacitance of single and double circuit transmission lines, three phase lines with stranded and bundle conductors, Generalized ABCD constants and equivalent circuits of short, medium & long lines. Line Performance: regulation and efficiency of short, medium and long lines, Series and shunt compensation, Introduction to FACTS.

Module 4: Overhead Line Insulators- Type, string efficiency, voltage distribution in string of suspended insulators, grading ring, preventive maintenance.

92
Module 5: Mechanical Design of Transmission Lines- Different types of tower, sag-tension calculations, sag-template, string charts, vibrations & damaging Corona-corona losses, radio & audio noise, transmission line – communication line interference.

Module 6: Tariffs & Load Curves- Definition & different tariffs for domestic, commercial, industrial application, Different Load and Load duration curves. Curves their significance.

Module 7: Introduction to EHV/HVDC transmission- Brief description of both the systems with working & constructional details.

Text/Reference Books:

EE 12: Power Electronics Laboratory

List of Experiments:
1. Study the performance of single-phase half-wave and full-wave uncontrolled rectifiers.
2. Study different firing circuits of SCR.
3. Study forced commutation circuits of SCR.
4. Study protection circuits of SCR: (i) dv/dt (ii) di/dt (iii) Over voltage (iv) Over current
5. Study the characteristics of a Thyristor and a Triac.
7. Study firing circuit of SCR using cosine-wave scheme.
9. Study digital firing circuit of SCR.
10. Study operation of Triac in all four modes and study AC phase control using Triac.

EE 13: Electrical Machines Laboratory II

List of Experiments:
1. To conduct running light test on a three phase squirrel cage induction motor and measure & plot input current, power, power factor at different values of applied voltage. Compute shunt parameters of the equivalent circuit at rated voltage conditions. (a) To conduct blocked rotor test on above motor at rated current conditions, measure stator winding resistance and compute series parameters of the equivalent circuit. (b) Draw complete equivalent circuit of the motor and compute the performance at rated voltage and at a slip of 5%.
2. To conduct direct load test on a three phase squirrel cage induction motor and measure & plot input current, torque, power factor, speed efficiency against output power.
3. To separate hysteresis and eddy current losses of a single phase transformer at rated voltage and frequency by conducting no load tests at different frequencies keeping V/f constant.
4. To conduct open circuit and short circuit test on a three phase three winding transformer and determine the equivalent circuit parameters.
5. To run a slip ring induction motor with variable rotor resistance and plot. (i) Speed versus external resistance. (ii) Braking time versus external resistance.
6. To determine the resistance of cage I/M by performing variable frequency test.
7. To conduct running light and blocked rotor test on a 3-phase slip ring I/M and to measure stater resistance. To draw the circuit diagram and determine therefrom its performance characteristics.
8. To start run and reverse a single phase capacitor start induction motor. Perform running light test and blocked rotor test to determine the equivalent circuit of the same.
9. To run a three phase scarge motor plot the variation of (a) Injected voltage versus brush separation. (b) No load speed versus brush separation. (c) No load speed versus injected voltage.
10. To run the induction motor as a SEIG (separately excited induction generator) and plot the variation of terminal voltage with speed, frequency with speed at different excitation capacitance.

EE 14: Power Systems Laboratory I

List of Experiments:

1. To perform various test on transmission line model, to determine the following (a) ABCD parameters (b) Surge impedance load (c) Efficiency at various load (d) Compensation of transmission line (e) Draw graph between terminal voltages and compensation.
2. (A) To measure (PPS and NPS) sequence components of supply voltage by segregating networks and verify graphically. (B) To measure (PPS and NPS) sequence components of supply current by segregating networks and verify graphically.
3. To determine direct axis reactance (xd) and quadrature axis reactance (xq) of a salient pole alternator.
4. To determine negative and zero sequence reactances of an alternator.
5. To determine sub transient direct axis reactance (xd) and sub transient quadrature axis reactance (xq) of an alternator.
6. To test the given AC energy meter by phantom loading at (i). Unity power factor (ii). 0.8 power factor lagging (iii). 0.8 power factor leading
7. To find the string efficiency (i). Without the guard ring (ii). With guard ring
8. To study the negative phase sequence protection scheme on testing kit.
10. To find the zero sequence impedance of a given three phase transformer.

EE 15: Network Laboratory

List of Experiments:

1. Verification of principle of superposition with dc and ac sources.
2. Verification of Thevenin, Norton and Maximum power transfer theorems in ac circuits.
3. Verification of Tellegin’s theorem for two networks of the same topology
4. Determination of transient response of current in RL & RC circuits with step voltage input
5. Determination of transient response of current in RLC circuit with step voltage input for under damped, critically damped and over damped cases
6. Determination of frequency response of current in RLC circuit with sinusoidal ac input
7. Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters
8. Determination of driving point and transfer functions of a two port ladder network and verify with theoretical values
9. Determination of image impedance and characteristic impedance of T and Π networks, using O.C. and S.C. tests Write Demo for the following (in Ms-Power point)
10. Verification of parameter properties in inter-connected two port networks: series, parallel and cascade also study loading effect in cascade

EE 16: Control Systems 2:2:0

[3]

Module 1: Introduction to Control Systems- Concept of control, control system terminology, classification of Control Systems.

Module 3: State Variable Models- State variables of a dynamic system, state equation, transfer function from the state equation and vice-versa.

Module 4: Feedback Control System Characteristics- Time domain and frequency domain responses and characteristics, steady state error, performance indices, concept of stability.

Module 6: Design of Feedback Control System-Approaches to system design, phase lead, phase lag design using Bode-diagram and root locus techniques

Module 7: Design using State variable Feedback- Controllability, observability, pole placement using state feedback, Ackerman’s formula, limitations of state variable feedback. Introduction to P/I/D and ON-OFF control actions.

Text/Reference Books:
3. Ogata, ‘Control System Engg’, PHI
5. RC Dorf and RH Bishop, ‘Modern Control Systems’, Addison-Wesley Publishers

EE 17: Power Systems II 2:2:0

[3]
Module 1: Representation of Power System Components- Synchronous machines, Transformers, Transmission lines, one line diagram, Impedance and reactance diagram, per unit System

Module 2: Symmetrical components- Symmetrical Components of unbalanced phasors, power in terms of symmetrical components, sequence impedances and sequence networks.

Module 3: Symmetrical fault analysis- Transient in R-L series circuit, calculation of 3-phase short circuit current and reactance of synchronous machine, internal voltage of loaded machines under transient conditions

Module 4: Unsymmetrical faults-Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generators and power system network with and without fault impedance. Formation of Z_{bus} using singular transformation and algorithm, computer method for short circuit calculations

Module 5: Load Flow- Introduction, bus classifications, nodal admittance matrix (Y_{bus}), development of load flow equations, load flow solution using Gauss Siedel and Newton Raphson method, approximation to N-R method, line flow equations and fast decoupled method

Module 6: Power System Stability- Stability and Stability limit, Steady state stability study, derivation of Swing equation, transient stability studies by equal area criterion and step-by-step method. Factors affecting steady state and transient stability and methods of improvement

Module 7: Power Control- Concept of Load frequency control, Concept of voltage and reactive power control

Text/Reference Books:

5. L. P. Singh; “Advanced Power System Analysis & Dynamics”, New Age International

E 18: Microprocessors and Microcontrollers

Module 1: Microprocessor Architecture-8085 microprocessor architecture, timing and control unit, machine cycles, interrupt diagram. Architecture of 8086 microprocessor

Module 2: Programming- Addressing modes, instruction set, assembly language programming, program for multi byte addition/subtraction, multiplication, division, block transfer.

Module 4: Semi Conductor Memory- Read only memories, random access memories. Interfacing of memories with 8085/86.

Text/Reference Books:

EE 19: Simulation Laboratory

List of Experiments based on MATLAB

1. Let
1 10 20
2 5 6
7 8 9
A
\[\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} \]
Reshape matrix to a column matrix/vector.

2. Let
1 2 3 4
5 6 7 8
9 10 11 12
A
\[\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{bmatrix} \]
Change the matrix to size (2X6).

3. Let
1 2
3 4
A
\[\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} \]
. Compute
\[\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} \]
where \(A_1 = A \); \(A_2 = A + 12 \); \(A_3 = A + 24 \); \(A_4 = A + 10 \).

4. Find the roots of polynomials \(s^4; \ 3s^3; \ 15s^2; \ 2s; \ 9 \ 0 \).

5. Plot the following on a polar plot \(f(\theta) = \sin 4\theta \) for

\[2 \ 2 \]

6. Draw the stem plot for \(x = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6] \) and \(y = [3 \ 1 \ 6 \ 4 \ 5 \ 2 \ 3] \).

7. Obtain second derivative of \(B = [\sec x; \ \tan x] \). And Integrate \(a = 3xt; \ 4t^2 \) w.r.t t.

8. Find the location of zeros and poles and plot the pole-zero map of the system given

\[F(s) = \frac{1}{s^4 + 3s^3 + 15s^2 + 2s + 9} \]

9. Plot root locus for \(G(s) = \frac{1}{s(s + j)(s + 2)} \) and obtain gain, poles, damping frequency, overshoot and frequency (rad/sec.).

10. Plot root locus and draw grid lines corresponding to i) \(\theta = \frac{1}{2} \) 0.5 ii) \(\theta = \frac{3}{2} \) for the system given by \(G(s) = \frac{1}{s^2 + 2} \).

EE 20: Control Systems Laboratory

List of Experiments:

1. Study of Step Response and Feed Back Properties for 1st and 2nd order system.
2. Error Detector Characteristics and Control Applications of the following. (i) LVDT (ii) Potentiometer
4. To study the characteristics (using DIGIAC 1750) of (i) Voltage to Current Converter. (ii) Current to Voltage Converter. (iii) Voltage to Frequency Converter. (iv) Frequency to Voltage Converter.
5. To obtain the Frequency Response Characteristics and Design of Compensator for a given system.
6. To obtain the Tr. Function and Control Characteristics of Servo Motor of DC/AC.
7. To obtain the Operational Characteristics for the Control Application of the following devices. (i) Stepper Motor (ii) Temperature Detectors (Thermister, Thermo couple etc.)
8. Simulation of control systems using MATLAB.

EE 21: Power Systems Laboratory II

List of Experiments:
1. To determine direct and sub transient axis reactance (x_d) and quadrature axis reactance (x_q) of a salient pole alternator.
2. To determine negative and zero sequence reactance of an alternator.
3. To determine fault current for L-G, L-L, L-L-L and L-L-L-G faults at the terminals of an alternator at very low excitation
4. To study the IDMT over current relay and determine the time current characteristics
5. To study percentage differential relay, Impedance, MHO and Reactance type distance relays
6. To determine location of fault in a cable using cable fault locator
7. To study Ferranti effect and voltage distribution in H.V. long transmission line using transmission line model.
8. To obtain steady state, transient and sub-transient short circuit currents in an alternator
10. To perform symmetrical and unsymmetrical fault analysis in a power system

EE 22: Microprocessors and Microcontrollers Laboratory

List of Experiments:
1. Familiarization with 8085/86 Microprocessor and 8051 Microcontroller kit.
2. Write and implement the program for addition of two and others (a) Hexadecimal Numbers (b) Decimal Numbers (c) 8-bit Numbers whose result is 16 bit (d) Conversion of temperature from °F to °C and vice-versa
3. Write program for display of 24 hour clock on 8085 mp kit.
4. Write program for display of 24 hour clock on LCD on 8051 kit (a) using RTC (b) Without RTC
5. To interface stepper motor and run clockwise and anti clockwise at various speeds using 8085 mp kit.
6. To generate square wave, saw tooth, triangular wave of 1KHz frequency and 50% duty cycle using 8051 kit.
7. To develop and run a program for arranging in ascending/descending order of a set of numbers
8. To obtain interfacing of keyboard and DMA controller
9. To obtain interfacing of PPI and UART/USART
10. To perform microprocessor based traffic light control operation through 8085 kit

EE 23: Electric Drives

Module 1: Introduction- Classifications of Electric Drives, components of electric drives, advantages of electric drives, Review of characteristics and speed control of d.c. and a.c. motors.

Module 2: Dynamics of Electric Drives:- Fundamental torque equation, speed-torque conventions and multiquadrant operation, equivalent values of drive parameters, components of load torques, nature and classification of load torques, calculation of time and energy-loss in transient operations, criteria for steady state stability, load equalization.

Module 3: Rating and Heating of Motors- Thermal model of motor for heating and cooling, classes of motor duty, determination of motor rating, frequency of operation of motors subjected to intermittent loads.

Module 4: Rectifier Control of D.C. Drives- Controlled rectifier circuits, 1-phase fully controlled rectifier-fed separately excited d.c. motor, 1-phase half-controlled rectifier-fed separately excited d.c. motor, 3-phase fully controlled rectifier-fed separately excited d.c. motor, multi quadrant operation of fully-controlled rectifier-fed d.c. motor.

Module 5: Chopper Control of D.C. Drives- Principle of operation and control techniques, motoring operation of separately excited and series excited motors, multi quadrant control of chopper-fed motors.

Module 6: Induction Motor (IM) Drives:- 3-phase a.c. voltage controller-fed IM drive, voltage source inverter (VSI) and current source inverter (CSI) variable frequency drives, comparison of VSI and CSI drives, cyclo-converter-fed IM drive, static rotor resistance control of 3-phase slipring IM.

Module 7: Synchronous Motor Drives- VSI drive, CSI drive, CSI drive with load commutation, cyclo-converter drive,

Module 8: Braking methods- Various methods of braking d.c. and a.c. motors, regenerative braking of d.c. motors during chopper control, static scherbius drive, commutatorless Kramer drive. Introduction to Microprocessor Control of Electric Drives.

Text/Reference Books:
EE 24: Computer Aided Analysis and Design

Module 1: Introduction to computer aided tools for analysis and design- software and hardware PSPICE /PSIM / MATLAB-SIMULINK/ MATHEMATICA/ 20SIM / LABVIEW / DSPACE (description as per choice/ availability)

Module 2: Modelling of Electrical/Electronic components and systems, Time and Frequency domain analysis, parameter variations, response representation storage/import/export.

Module 4: Applications for control systems, power systems and electrical machines.

Text/Reference Books:

EE 25: Electric Drives Laboratory

List of Experiments:
1. Study speed control of separately excited dc motor by varying armature voltage using single-phase fully controlled bridge converter.
2. Study speed control of separately excited dc motor by varying armature voltage using single phase half controlled bridge converter.
3. Study speed control of separately excited dc motor using single phase dual converter (Static Ward-Leonard Control)
4. Study speed control of separately excited dc motor using MOSFET/IGBT chopper
5. Study closed loop control of separately excited dc motor
6. Study speed control of single phase induction motor using single phase ac voltage controller.
7. Study speed control of three phase induction motor using three phase ac voltage controller
8. Study speed control of three phase induction motor using three phase current source inverter
9. Study speed control of three phase induction motor using three phase voltage source inverter
10. Study speed control of three phase slip ring induction motor using static rotor resistance control using rectifier and chopper

EE 26: Advanced Simulation Laboratory
0:0:2 [1]

(List of Experiments (PSPICE based) may be suitably framed as per subject coverage;)

List of Experiments:

1. Study various commands of PSPICE.
2. Determine node voltages and branch currents in a resistive network.
3. Obtain Thevenin’s equivalent circuit of a resistive network.
6. Determine line and load currents in a three phase delta circuit connected to a 3-phase balanced ac supply.
7. Determine z,y,g,h and transmission parameters of a two part network.
8. Obtain transient response of output voltage in a single phase half wave rectifier circuit using capacitance filter.
9. Obtain output characteristics of CE NPN transistor.
12. Verify truth tables of NOT, AND or OR gates implemented by NAND gates by plotting their digital input and output signals.

EE 27: Computer Organization and Architecture
2:2:0 [3]

Module 1: Introduction to basic computer architecture, register transfer, bus and memory transfers, arithmetic, logic and shift micro operations.

Module 2: Instruction codes, computer registers, computer instructions, timing and control, instruction cycle, memory reference instructions, I/O interrupt, complete computer description, design of basic computer, design of accumulator logic.

Module 3: Micro programmed control, control memory, address sequencing, micro program example, design of control unit.

Module 4: Central Processing Unit: Introduction, general register organization, stack organization, instruction formats, addressing modes, data transfer and manipulation, program control, RISC.

Module 5: Pipeline and Vector Processing: Parallel processing, pipelining, arithmetic pipeline, instruction pipeline, RISC pipeline, vector processing, array processors.

Module 6: Input-output Organisation: Peripheral devices, input-output interface, asynchronous data transfer, modes of transfer, priority interrupt, DMA, IOP serial communication.
Module 7: Memory Organisation: Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory, memory management, hardware multiprocessor architectures and their characteristics, interconnection structures, inter processor arbitration, inter-processor communication and synchronization, cache coherence.

Text/Reference Books:

EE 28: Communication Systems

Module 1: Introduction to Communication Systems: Block diagram, modulation and demodulation, need for modulation, transmission considerations and decibel ratios.

Module 2: Amplitude modulation, generation of AM waves, concept of SSB and DSB modulation, vestigial sideband transmission, power-relationships, AM receivers, S/N ratio.

Module 3: Phase and frequency modulation, pre-and de-emphasis, generation of FM waves, CW modulation systems, narrowband FM, FM detectors and superheterodyne receivers, S/N ratio.

Module 4: Concepts of information, Shannon-Hartley theorem, bandwidth-S/N ratio tradeoff, coding, codes for error detection and correction, convolution codes, block and trellis codes.

Module 5: Pulse modulation, PAM, PPM, PWM systems. Concept of PCM, basic coding and quantization, sample and hold, quantization noise, signal to noise ratio, companding, TDM, Delta modulation, adaptive delta modulation, S/N ratio, comparison of PCM, delta and adaptive delta modulation.

Module 6: ASK, PSK, FSK, differential PSK and quadrature shift keying, synchronization concepts and phase locked loops.

Module 7: Block diagram of Fibre optic communication systems, light propagation in optical fibres, numerical aperture and acceptance cones of OFs, losses in optical fibres. Multiplexing in optic Fibre links.

Module 8: An introduction to telephone exchange systems. Telecommunication traffic, circuit switching, message switching and packet switching. Resource sharing and multiple access techniques.

Module 9: An introduction to microwave, radar and satellite communication.

Text/Reference Books:

(Electives under one Group EE*)

EE*29: Information Technology

Module 1: An overview of the revolution in computers and communications.

Module 2: Applications software, common features of software speciality software, Ethics & Intellectual Property Rights.

Module 3: Systems software, common operating systems, software for online computing.

Module 4: System Unit: System board, microprocessor.

Module 5: Input and output: Keyboard, pointing, scanning, voice input devices, voice recognition system, monitors, printers, plotters, voice output devices.

Module 7: Communication and Connectivity: E-mail, fax, voice messaging system, user connection, communication channels, data transmission, network types.

Module 8: Internet and Web: Applications, Access, E-mail, discussion groups, E-commerce, services, browsers, web pages, multimedia, graphics program, virtual reality privacy, security and other such issues.

Text/Reference Books:
4. Curtin, Foley, Sen and Morin, “Information Technology”, TMH.

EE* 30: Information Security

Module 4: Audit and Assurance, Standards, Availability, Survivability, Introduction to disaster recovery and Forensics.

Module 5: Introduction to Cryptography.
Text/Reference Books:

EE*31: Digital Signal Processing
3:0:0 [3]

Module1: The Z-Transform analysis of LTI Systems: Analysis of LTI systems in z-domain, transient and steady state response, causality and stability, Shur-Cohn stability test, Jury test, Shur-Cohn-Fuzzivera stability criterion.

Module2: DFT and FFT: DFT and its properties, linear filtering using DFT, Direct computation of DFT, circular convolution, FFT algorithms; Geortzel algorithm, Radix-2 and Radix-4 algorithms, Chirp-Z algorithm. Circular convolution and fast linear convolution.

Module3: Implementation of Discrete time Systems: Direct form, cascade form, frequency selective and lattice structure for FIR filters, direct form, signal flow graph and transposed structure for IIR filters, cascade, parallel and lattice structure for IIR filters, state space structure.

Module4: Design of Digital Filters: Design of FIR filters, window method, frequency sampling method, design of IIR filters by approximation of derivatives, quantization effects in digital filters. Bilinear transformation, characteristics of some commonly used analog filters for design of IIR filters, least square methods.

Module5: Time-Frequency Analysis: Introduction to wavelets and wavelet transforms.

Module6: Brief introduction to DSP architecture: Pipeline, lattice and systolic architecture.

Text/Reference Books:
5. S. Salivahanan, “Digital Signal Processing”, TMH.

EE*32: Database Systems
3:0:0 [3]

Module1: Identification of need for computerization; Pole, Tasks, Attributes and Tools of System Analyst;

Module2: Information Collection: Sources, searching Methods, Interviewing Techniques; Feasibility, Economic and Technical Analysis, Allocation and Trade-off. Requirements and Specifications.

Module3: Need for a DBMS, Uses of a DBMS, Advantages. Introduction to Data models, Schemes, Architecture, Languages and Environment. Entity-Relationship concepts, Attributes, Domains, keys, Foreign Keys, ER Diagram, Naming

105
Module 4: Secondary storage devices, file operations. File organization-Sequential, direct, indexed, B trees, Inverted lists.

Module 5: Relational models-Order, tuple Keys, relational algebraic operations-Set operations, select, project, join, division operation. Hierarchical data models-Parent child relationships, Occurrence trees, data definition and manipulation.

Module 6: Network Models, Structures, Sets, Constraints on insertion and retention, special sets, user work area, currency indicators, DML commands.

Module 7: Relational languages: SQL-Data definition, queries in SQL, update statements, views, indexing. Relational Calculus-Tuple calculus, well formed formula, specifications, quantifiers. QBE-data retrieval, update, conditions, aggregate operators, directory.

Module 8: Relational database design. Functional dependencies-Anomalies, rules, axioms, equivalence of sets, minimal representation, Normal forms-first, second. Third and Boyce Codd: algorithms for conversion, dependency preservation multi valued dependencies and fourth normal form.

Module 9: An Elementary Introduction to Oracle. Concept of object oriented database management systems, Distributed Data Base Management Systems.

Text/Reference Books:

EE 33: High Voltage Engineering 2:0:2

2. **Module 2:** Liquid Dielectrics-Conduction & breakdown in pure & commercial liquids, suspended particle theory, stressed oil volume theory, liquid dielectrics used in practice; Solid Dielectrics-Intrinsic, electromechanical, & thermal breakdown, composite dielectric, solid dielectrics used in practice; Applications of Insulating Materials: Application of insulating materials in power transformers, rotating machines, circuit breakers, cables & power capacitors.

3. **Module 3:** Generation of High Voltages & Currents: Generation of high D.C., A.C., impulse voltage & impulse currents. Tripping & control of impulse generators; Measurement of High Voltages & Currents: Measurement of high D.C., A.C. (Power frequency & high frequency) voltages, various types of potential dividers, generating voltmeter, peak reading A.C. voltmeter, Digital peak voltmeter, electrostatic voltmeter. Sphere gap method, factors influencing the spark voltage of sphere gaps.

Module 7: H.V.D.C. Transmission: Advantages, disadvantages & economics of HVDC transmission system. Types of d.c. links, converter station equipment, their characteristics.

Text/Reference Books:

EE*34: Mechatronics 3:0:0 [3]

Module 1: Introduction to Mechatronics and its Systems; Evolution, Scope, Measurement Systems, Control Systems, open and close loop systems, sequential controllers, microprocessor based controllers, mechatronics approach.

Module 4: Pneumatic and Hydraulic actuation systems: actuation systems, Pneumatic and hydraulic systems, directional control valves, pressure control valves, cylinders, process control valves, rotary actuators.

Module 5: Mechanical actuation systems -Mechanical systems, types of motion, kinematics chains, cams, gear trains, ratchet and pawl, belt and chain drives, bearings, mechanical aspects of motor selection.

Module 7: Programmable Logic Controller- Introduction, Basic structure, Input/Output Processing, Programming, Mnemonics, Timers, Internal relays and counters, Data handling, Analog Input/Output, Selection of a PLC.

Module 8: Robotics- Introduction, types of robots, Robotic control, Robot drive systems Robot end effectors, selection parameters of a robot, applications.

Text/Reference Books:

EE*35: Design of Electrical Machines 3:0:0

Module 1: Review of Magnetic and insulating materials.
Module 2: Principles of design of Machines: Factors and limitations in design, specific magnetic and electric loadings, output, real and apparent flux densities, separation of main dimensions for D.C., induction and synchronous machines.
Module 4: Design of Transformers: General considerations, output equation, main dimensions, leakage reactance, winding design, tank and cooling tubes, calculation of magnetizing current, losses, efficiency and regulation.
Module 5: Design Three-phase induction motors: General considerations, output equation, choice of specific electric and magnetic loadings, No. of slots in stator and rotor, elimination of harmonic torques, design of stator and rotor windings, leakage reactance, equivalent resistance of squirrel cage rotor, magnetizing current, temperature rise and efficiency.
Module 6: Design of Alternators: Classification and their comparison, specific loadings, output coefficient, main dimensions, short circuit ratio, elimination of harmonics in generated EMF, stator winding design.
Module 7: Introduction to computer aided electrical machine design.

Text/Reference Books:

EE*36: Computational Intelligence 3:0:0 [3]

Module 1: Introduction to the concept of A.I.
Module 2: Problem Solving: General problem solver, Contributions of GPS to recursive programming, problem representation and extrapolation, Cybernetics and adaptive control. Accomplishments and limitations of GPS.

Module 3: Production systems: design, implementation and limitations.; Game Playing: History of A.I. in game playing, game trees and graph theory. Mini-max procedure, pruning the game tree.

Module 6: LISP/Prolog programming language.

Module 8: Introduction to fuzzy sets, fuzzy mathematics, membership functions, design of a fuzzy model & its working, steps of working – fuzzification, composition, implication, aggregation, defuzzification.

Text/Reference Books:

EE* 37: Introduction to Robotics

Module 3: Robotic Motion: Different types of trajectories and introduction to their generation.

Module 4: Position Control: Independent joint control.

Module 5: Introduction to advanced control for robot application.

Text/Reference Books:

EE*38: Non-Conventional Energy Sources and Applications 3:0:0 [3]

Module 1: Introduction: Limitations of conventional energy sources, need and growth of alternate energy sources, basic schemes and applications of direct energy conversion.

Module 2: MHD Generators: Basic principles and Hall Effect, generator and motor effect, different types of MHD generators, conversion effectiveness. Practical MHD generators, applications and economic aspects.

Module 4: Wind Energy: History of wind power, wind generators, theory of wind power, characteristics of suitable wind power sites, scope in India, advantages and limitations.

Module 5: Thermo-electric Generators: Seeback effect, peltier effect, Thomson effect, thermoelectric converters, brief description of the construction of thermoelectric generators, applications and economic aspects.

Module 7: Miscellaneous Sources: Geothermal system, characteristics of geothermal resources, choice of generators, electric equipment and precautions. Low head hydro plants, definition of lowhead hydro power, choice of site and turbines. Tidal energy, idea of tidal energy, tidal electric generator, limitations.

Text/Reference Books:
1. D.S.Chauhan, ‘Non Conventional Energy Resources’ New Age Publication
3. B.H.Khan, ‘Non Conventional Energy Resources’ TMH.

EE*39: Advanced Instrumentation 3:0:0 [3]

Module 2: Virtual Instrumentation: Introduction to graphical programming, data flow & graphical programming techniques, advantage of VI techniques, VIs and sub-VIs loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, string and file I/O, Code Interface Nodes and DLL links.

Module 3: Data Acquisition Methods: Analog and Digital IO, Counters, Timers, basic ADC designs, interfacing methods of DAQ hardware, software structure, use of simple and intermediate VIs. Use of Data Sockets for Networked Communication and Controls.

Module 4: PC Hardware Review & Instrumentation Buses: Structure, timing, interrupts, DMA, operating system, ISA, PCI, USB, PCMCIA buses. IEEE488.1 & 488.2 Serial Interfacing -RS232C, RS422, RS423, RS485; USB, VXI, SCXI, PXI.

Text/Reference Books:
3. S. Gupta, J.P. Gupta, ‘PC interfacing for Data Acquisition & Process Control’, ISA,

EE*40: Computer Networks 3:0:0 [3]

Module 5: Application Layer: Application Layer-File Transfer, Access and Management, Electronic mail, Virtual Terminals, Other application, Example Networks – Internet and Public Networks.

Text/Reference Books:

EE*41: Advanced Control Systems 3:0:0 [3]
Module1: State Space Analysis of Continuous System: Review of state variable representation of continuous system, conversion of state variable models to transfer function and vice-versa, solution of state equations and state transition matrix, controllability and observability, design of state observer and controller

Module2: Analysis of Discrete System: Discrete system and discrete time signals, state variable model and transfer function model of discrete system, conversion of state variable model to transfer function model and vice-versa, modelling of sample hold circuit, solution of state difference equations, steady state accuracy, stability on the z-plane and Jury stability criterion, bilinear transformation

Module4: Non linear Systems: Types of non linearities, phenomena related to non-linear systems. Analysis of non linear systems-Linearity method, second order non-linear system on the phase plane, types of phase portraits, singular points, system analysis by phase-plane method, describing function and its application to system analysis.

Module7: Introduction to neural network, fuzzy logic and genetic algorithms

Text/Reference Books:

EE*42: Advanced Power Electronics

Module2: A.C. to A.C. Converter: Classification, principle of operation of step up and step down cycloconverter. Single phase to single phase cycloconverter with resistive and inductive load. Three phase to single phase cyclo converter: Half wave and full wave. Cosine
wave crossing technique. Three phase to three phase cyclo converter. Output voltage equation of cyclo converter.

Module3: D.C. to A.C. Converter: Classification, basic series and improved series inverter, parallel inverter, single phase voltage source inverter, steady state analysis, Half bridge and full bridge inverter: Modified Mc Murray and Modified Mc Murray Bedford inverter, voltage control in single phase inverters, PWM inverter, reduction of harmonics, current source inverter, three phase bridge inverter.

Module4: Power Supplies: Switched mode D.C. and A.C. power supplies. Resonant D.C. and A.C. power supplies.

Module5: Applications: Dielectric and induction heating. Block diagram of D.C. and A.C. motor speed control.

Text/Reference Books:
1. Jacob, Michael Power Electronics: Principles & Application, Vikas Publishing House
2. M.H. Rashid, Power Electronics : Circuits, devices and applications , PHI.

EE*43: Materials in Electrical Systems

Module1: Materials- Conductors-free electron theory and electron scattering Dielectrics-Polarization, solid, liquid and gas dielectrics Insulators-Classification, Application in electric devices. Magnetic materials-classification based on orientation of magnetic dipoles, Optoelectronic materials, Semiconductors-simple and compound, Refractory Materials. Solders and contacts, Superconductivity and super conducting materials.

Module2: Components- Resistors and Capacitors. Display units:-LED, LCD and Monitors. Effect of environment on components.

Module3: Processes- Basic processes used in the manufacture of integrated circuits such as Epitaxy, masking, photolithography, diffusion, oxidation, Etching, metallization, Scribing, wire bonding and Encapsulation. Induction and Dielectric heating. Electron beam welding and cutting.

Module4: Cables- Calculations of capacity of cables, charging current, stress, grading, heating of cables, Construction and characteristics of HV & EHV cable

Text/Reference Books:
2. Mahajan, ‘Principles of growth and processing of semiconductors,’ MGH.
5. Ruska N Scot, ‘Microelectronic processing – an introduction to the manufacture of integrated circuits,’ MGH.
Module 1: Introduction - Structure of power systems, Power system control centre and real time computer control, SCADA system Level decomposition in power system Power system security

Module 2: Various operational stages of power system Power system voltage stability, Deregulation and electricity market

Module 3: Economic Operation : Concept and problems of unit commitment Input-output characteristics of thermal and hydro-plants System constraints Optimal operation of thermal units without and with transmission losses, Penalty factor, incremental transmission loss, transmission loss formula (without derivation)

Module 4: Hydrothermal scheduling long and short terms Concept of optimal power flow

Module 5: Load Frequency Control : Concept of load frequency control, Load frequency control of single area system: Turbine speed governing system and modelling, block diagram representation of single area system, steady state analysis, dynamic response, control area concept, P-I control, load frequency control and economic dispatch control. Load frequency control of two area system:

Module 6: Tie line power modelling, block diagram representation of two area system, static and dynamic response

Module 7: Automatic Voltage Control : Schematic diagram and block diagram representation, different types of Excitation systems & their controllers.

Text/Reference Books:
7. M.H. Rashid, “Power Electronics: Circuits, devices and Applications” PHI

EE*45: Switchgear and Relaying

3:0:0

[3]
Module 1: Switchgear- Introduction, functions of a circuit breaker, contacts separation and arc phenomenon, theory of arc formation and its extinction, recovery voltage, restriking voltage, interruption of capacitive and inductive currents, resistance switching, double frequency transients, circuit breaker ratings, clearing time, reclosing time, classification of circuit breakers, oil, air-blast, vacuum and SF6 circuit breakers.

Module 2: Protection Against Lightning- Lightning mechanism and its characteristics, overvoltages due to lightning, protection of lines and sub-stations against lightning using shield wires, tower footing resistance, counterpoises, ground wires, rod gaps, lightning arrestors, their construction, working and ratings, surge absorbers and surge divertors.

Module 3: Insulation Co-ordination: Impulse volt-time characteristics of electrical apparatus, basic impulse insulation level, insulation levels of sub-station equipments.

Module 4: Protective Relays: Introduction, basic requirements, operating principles and characteristics of electromagnetic type over-current, differential, impedance and admittance relays. Detail of protection against abnormal conditions for alternators, transformers, feeders transmission lines, and bus-bars. Carrier current protection for long lines.

Module 5: Static Relays: Introduction, comparison with electromagnetic relays, working of instantaneous, definite time, inverse time and directional over current relays, introduction to digital relays.

Module 6: Sub- Stations: Types of sub-stations, sub-station equipments and outdoor yard layout, types of bus-bars, key diagrams and bus-bar arrangements.

Text/Reference Books:
5. Badriram and DN Vishwakarma, “Power System Protection and Switchgear”, TMH

EE 46: Utilization of Electrical Energy & Electric Traction

Module 1: Illumination- Nature of light, important definitions, laws of illumination, principle of production of light- discharge through gases under pressure – incandescence/sources of light-filament lamp, halogen lamp-discharge lamp-sodium discharge lamp, high pressure mercury discharge lamp, dual lamps, fluorescent lamps, lamp efficiency, requirements of good lighting, illumination level, absence of contrasts, shadows, glare, colour rendering-lamp fittings. Lighting schemes, design of indoor & outdoor lighting system-street lighting, flood lighting, photometers.

Module 2: Electric Heating- Advantages of electric heating, classification of heating methods, detailed study of resistance heating, arc heating, electron bombardment heating, induction heating & dielectric heating and their control.
Module 3: Electrolytic Processes
Fundamentals of electro deposition—laws of electrolysis
applications of electrolysis, electro deposition, manufacture of chemicals, anodizing, electro-
polishing, electro-cleaning, electro-parting, electrometallurgy, electric supply.

Module 4: Train Mechanics
Types of services, characteristics of each type of service, speed
time curve, simplified speed time curve, average speed, schedule speed, factors affecting
schedule speed, tractive effort for propelling a train, power of the traction motor, specific
energy output, specific energy consumption, factors affecting specific energy consumption,
mechanics of train movement, coefficient of adhesion, factors affecting slip.

Module 5: Electric Traction
D.C. & A.C. traction motors, their characteristics
Traction Motor Control: Starting and speed control of D.C. series motors, shunt transition, bridge
transition, drum controller employing shunt transition, energy saving with series parallel
starting, metadyne control, multiple unit control, braking of traction motors.

Module 6: Current Collection Systems
Conductor rail equipment, current collection gear for
OHE: Cable collector, pole collector, bow collector, pantograph collector.

Text/Reference Books:
5. BR Sharma, “Utilization of Electrical Energy”.

EE P1: Project Work I
0:0:8
[4]

The object of Project Work I is to enable the student to take up investigative study in the
broad field of Electrical Engineering, either fully theoretical/practical or involving both
theoretical and practical work to be assigned by the Department on an individual basis or
two/three students in a group, under the guidance of a Supervisor. This is expected to provide
a good initiation for the student(s) in R&D work. The assignment to normally include:

- Survey and study of published literature on the assigned topic;
- Working out a preliminary Approach to the Problem relating to the assigned topic;
- Conducting preliminary Analysis/Modelling/Simulation/Experiment/Design/Feasibility;
- Preparing a Written Report on the Study conducted for presentation to the Department;
- Final Seminar, as oral Presentation before a Departmental Committee.

EE P2: Project Work II & Dissertation
0:0:32 [16]

The object of Project Work II & Dissertation is to enable the student to extend further the
investigative study taken up under EC P1, either fully theoretical/practical or involving both
theoretical and practical work, under the guidance of a Supervisor from the Department
alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to
provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

- In depth study of the topic assigned in the light of the Report prepared under EC P1;
- Review and finalization of the Approach to the Problem relating to the assigned topic;
- Preparing an Action Plan for conducting the investigation, including team work;
- Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- Final development of product/process, testing, results, conclusions and future directions;
- Preparing a paper for Conference presentation/Publication in Journals, if possible;
- Preparing a Dissertation in the standard format for being evaluated by the Department;
- Final Seminar Presentation before a Departmental Committee.
Annexure A

AICTE: AIB-UGS (E&T) Working Groups (December 2010)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Working Group</th>
<th>Coordinators</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HSS, for all the programmes in 5-6 Courses; (=14 Credits)</td>
<td>Prof. Vijay Khole
Ex. Vice Chancellor
University of Mumbai, Mumbai.
e-mail: vvkhole@gmail.com</td>
<td>• Prof. N. Rajaram, Dean School of Social Sciences, Central Univ., Gujrat, Sector-30 Gandhinagar, Gujrat-382030
• Prof. Xaxa, Dept. of Sociology, University of Delhi (North Campus) Delhi-110006
• Prof. E. Ramakrishna, Dean School of Languages and Culture Studies, Central Univ, Gujrat, Sector-30 Gandhinagar Gujrat-382030
• Prof. Abhay Pehte, Director, Dept. of Economics, Univ. of Mumbai, Vidyanaagari, Kalina, Santacruz (E) Mumbai-400098
• Prof. Ms Rashmi Oza, Dept. of Law, Univ. of Mumbai, M.G. Road Fort Mumbai-400032</td>
</tr>
</tbody>
</table>
| 2. | *BS*, for all the programmes in 10-12 Courses; (=30 Credits) | Prof. Vijay Khole
Ex. Vice Chancellor
University of Mumbai, Mumbai,
email: vvkhole@gmail.com | For Physics
• Dr. Sudhir Panse, Adjunct Prof., Dept of Physics, Institute of Chemical Technology (Deemed Univ.) Nathalal Parekha Marg, Matunga, Mumbai-400019.
• Prof. Pandit Vidyasagar, Head Dept. of Physics, Univ. of Pune-411007.
For Chemistry
• Prof. Mansingh, Dean School of Chemical Sciences, Central Univ. Gujrat Sector-30 Gandhinagar, Gujrat-382030.
• Prof. A. B. Pandit, Head, Dept.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>of Chemical Engineering, Institute of Chemical Technology (Deemed Univ.) Nathalal Parekha Marg, Matunga, Mumbai-400019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>For Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. Dilip Deobagkar, Vice Chancellor, Goa University, Goa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. Sanjay Deshmukh, Head, Dept. of Life Sciences, Univ. of Mumbai, Vidyanagar, Kalina Santacruz (E) Mumbai-400098</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. S. B. Nimse, Vice Chancellor S.R.T. M. University Nanded-431606.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. C. Kannan, pro Vice Chancellor Central University Hyderabad.</td>
</tr>
<tr>
<td>3</td>
<td>ES, for all the programmes in 10-12 Courses; (=30 Credits)</td>
<td>Prof. D. N. Reddy Vice Chancellor JNTU, Hyderabad e-mail: vcjantu@yahoo.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. T. K. K. Reddy, Professor of Mech. Engg., Director, Academic Audit Cell, JNT University Hyderabad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. K. Seshagiri Rao, Professor of Civil Engg., JNTU College of Engg., Kukatpally Hyderabad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. D. Thukaram EE Dept., IISc, Bangalore e-mail: dtram@ee.iisc.ernet.in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prof. P. V.D. Somasekhar Rao, Professor of Elec. & Comm. Engg., JNT University Hyderabad.</td>
</tr>
</tbody>
</table>
| | | • Prof. Kommaraiah, Professor of Mech., Engg., Malla Redy College of Engg., Misamaguda, Dhulapalli,
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 4 | **PS**, (covering PSC & PSE for each identified programme in 15-25 Courses; (=50 + 20 Credits)) | **Electrical Engineering (EE)**
Prof. A. Swarup HOD, EE Dept., National Institute of Technology, Kurukshetra |
| | | • Dr. I. N. Kar, Professor, Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi-110016 |
| | | • Dr. Rajendra Prasad, Professor, Department of Electrical Engineering, IIT Roorkee, Roorkee. |
| | | • Dr. S. P. Singh, Professor, Department of Electrical Engineering IT BHU Varanasi. |
| | | • Dr. A. P. Mittal, Professor, Department of Instrumentation and Control Engineering, NSIT Dwarka Sector 3, New Delhi |
| | | • Dr. Anurag Kumar Swami, Professor Department of Electrical Engineering, College of Technology GB Pant University of Technology Pantnagar-263145 |
| 5 | **OSE**, for all the programmes in 15-20 Courses (for 12 Credits to be chosen) | Prof. P. Karunakaran Dept. of Mech.Engg., IIT, Mumbai
E-mail: karuna@iitb.ac.in; |
<p>| | | • Prof. K. Narsimhan, Dept., of Metallurgical Engg. And Material Sci. IIT Bombay, Powal, Mumbai-400076, Mob:- 9869264161 |
| | | • Dr. B. Ramamoorthy, Head, Manufacturing Engg Section, Dept. of Mechanical Engg., Indian Institute of Technology Madras, IIT Madras, Guindy, Chennai-600036, Tel-044-22574674, 22575705, 22578578, Mob-9444468293, email- ramoo@iitm.ac.in |
| | | • Prof. Manoj Kumar Tiwari, Professor, Dept. of Industrial Engineering and Management, Indian Institute of Technology Kharagpur-721302, Tel- |</p>
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
</table>
| Mandatory Courses, for all the programmes in 3-5 Courses (=8 Units); | Prof. Y. V. Rao
Director, National Institute of Technology, Warangal
e-mail: yvrao_48@yahoo.co.in |
| | Prof. R.V. Chalam,
Mechanical Engg. Dept.,
National Institute of Technology, Warangal-506004, Mob-9866212198,
Email- chalamry@yahoo.com |
| | Prof. P.V. D. Somasekhar Rao,
Director (Academic & Planning) JNTUH,
Hyderabad-500085, Mob - 09440067346, email- pvds_sekhar@hotmail.com |
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Department/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. G. Srinikethan</td>
<td>Dean (Academic) NITK, Surathkal, Srinivasnagar-575025, Ph.-0824-2473601, Fax-0824-2474033, email-srinikethan.g@gmail.com</td>
</tr>
<tr>
<td>Prof. Singam Jayanthu</td>
<td>Dept. of Mining Engg., National Institute of Technology Rourkela -769008, Fax No-0661-2462999</td>
</tr>
<tr>
<td>Prof. L. Ajay Kumar</td>
<td>Dept. of Mining Engg., Anna University, Chennai (T.N.)</td>
</tr>
<tr>
<td>Dr. A.O. Surendranthan</td>
<td>Prof. Head Dept. of Met. & Mkt. Engg., NITK, Surathkal, Srinivasnagar-575025</td>
</tr>
</tbody>
</table>
Annexure B

All India Board of Undergraduate Studies in Engineering & Technology
Composition (2009-12)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Constituency</th>
<th>Name/Designation/Address</th>
</tr>
</thead>
</table>
| 1 | Chairman to be nominated by the Chairman, AICTE | Prof. B. S. Sonde
Former Vice Chancellor, Goa University,
#274, Shree Ananth Nagar,
Electronics City P.O., Bangalore 560 100 |
| 2-3 | Representative of Industry and other major users, to be nominated by the Chairman, AICTE | 2 Shri Murli Ranganathan
Chief Executive Officer, Torrent Power Ltd.
Torrent House, Ahmedabad 380 009
3 Shri Bhaskar Chatterjee
Secretary, Department of Public Enterprises,
Government of India, Ministry of Industry,
CGO Complex, Block No. 14, Lodhi Road,
New Delhi 110 003 |
| 4 | Representative of Professional Bodies to be nominated by the Chairman, AICTE | 4 Shri Som Mittal
President National Association of Software & Service Companies (NASSCOM)
International Youth Centre, Teen Murti Marg, Chanakyapuri, New Delhi 110 021 |
| 5-9 | Experts in various fields of ET, Management etc., to be nominated by the Chairman, AICTE | 5 Dr. P. Karunakaran
Department of Mechanical Engineering,
Indian Institute of Technology Mumbai
Powai, Mumbai 400 076
6 Dr. S. K. Mahajan
Director of Technical Education,
Government of Maharashtra,
3 Mahapalika Marg, Mumbai 400 001
7 Prof. P. K. Bose
Director National Institute of Technology,
Silchar 788 010 (Assam)
8 Prof. Y. V. Rao
Director, National Institute of Technology,
Warangal 506 004 (A.P.)
9 Prof. M. S. Mubaswhir
Director, National Institute of Technology,
Hazratbal, Srinagar 190 006 , (J&K) |
| 10 | Representative of CII | 10 Vice President
Confederation of Indian Industry (CII),
23 Institutional Area, Lodhi Road,
New Delhi 110 003 |
| 11 | Representative of Indian Institute of Technology to be nominated by the Chairman, AICTE | 11 Prof. Surendra Prasad
Director Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 |
<table>
<thead>
<tr>
<th></th>
<th>Representative of Technological Universities including Deemed Universities to be nominated by the Chairman, AICTE</th>
<th>12 Prof. D. Narasimha Reddy Vice Chancellor, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 072</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Representative of General Universities to be nominated by the Chairman, AICTE</td>
<td>13 Dr. Vijay Khole Ex Vice Chancellor, Universsity odf Mumbai, Mumbai</td>
</tr>
<tr>
<td>13</td>
<td>An Officer of AICTE not below the rank of Asst. Director in AICTE dealing with the Board of Studies matter- Member Secretary (Ex Officio)</td>
<td>Advisor, AICTE</td>
</tr>
</tbody>
</table>